SLR-KO – 6

Max. Marks: 100

Seat	
No.	

F.Y.M.C.A. (Under Faculty of Engg.) (Part – I) Examination, 2015 FUNDAMENTALS OF COMPUTING ENVIRONMENT (Old)

Day and Date : Monday, 7-12-2015 Time : 10.30 a.m. to 1.30 p.m.

- 1. Multiple choice questions :
 - 1) UNIVAC is _____

- A) Universal Automatic Computer
- B) Universal Array Computer
- C) Unique Automatic Computer
- D) Unvalued Automatic Computer
- 2) _____ is an interpreter.
 - A) An interpreter does the conversion line by line as the program is run
 - B) An interpreter is the representation of the system being designed
 - C) An interpreter is a general purpose language providing very efficient execution
 - D) None of the above
- 3) Analog computer works on the supply of _____
 - A) Continuous electrical pulses B) Electrical pulses but not continuous
 - C) Magnetic strength D) None of the above
- 4) A kind of serial dot-matrix printer that forms characters with magneticallycharged ink sprayed dots is called _____
 - A) Laser printer B) Drum printer
 - C) Ink-jet printer D) Chan printer
- 5) ______ is the largest computer.
 - A) Mainframe Computer B) Mini Computer
 - C) Micro Computers D) Super Computers
- 6) MSI stands for _____
 - A) Medium Scale Integrated Circuits
 - B) Medium System Integrated Circuits
 - C) Medium Scale Intelligent Circuit
 - D) Medium System Intelligent Circuit

SLR-K	O – 6	-2-				
7)	In a computer is ca	pable to store single binary bi	t.			
	A) Capacitor	B) Inductor				
	C) Register	D) Flip flop				
8)	is problem oriented l	anguage.				
	A) High level language	B) Machine language				
	C) Assembly language	D) Low level language				
9)	IBM 1401 is					
	A) First Generation Computer	B) Second Generation Comp	outer			
	C) Third Generation Computer	D) Fourth Generation Comp	uter			
10)	The brain of any computer system	is				
	A) Control Unit	B) Arithmetic Logic Unit				
	C) Central Processing Unit	D) Storage Unit				
11)	11) The process of a computer receiving information from a server on the Internet is known as					
	A) Pulling	B) Pushing				
	C) Downloading	D) Transferring				
12)	is the other name for	r LAN card.				
	A) Network Interface Card	B) Network Connector				
	C) Modem	D) Internet Card				
13)	is a read only memo	ory storage device.				
	A) Floppy Disk	B) CD-ROM				
	C) Hard Disk	D) None of these				
14)	is the logical topolog	gy.				
	A) Bus	B) Tree				
	C) Star	D) Both A) and B)				
15)	A term used to describe interconne	ected computer configuration	is			
	A) Modulation	B) Multiprocessing				
	C) Micro program sequence	D) Multiprogramming				
16)	data communicatio a serial communication link.	n method is used to transmit t	ne data over			
	A) Simplex	B) Half duplex				
	C) Full duplex	D) None of these				

		-3-	SLR-KO – 6			
17)	memories allows sir	nultaneous read and write oper	rations.			
	A) ROM	B) RAM				
	C) EPROM	D) None of above				
18)	18) The signal which has infinitely many levels of intensity over a perior is called					
	A) Analog signal	B) Digital signal				
	C) Sound signal	D) Both A) and B)				
19)	Operating system, editors, and deb	buggers come under				
	A) System Software	B) Application Software				
	C) Utilities	D) None of these				
20)	transmission, data i intervals.	s transmitted by character at re	gular			
	A) Asynchronous	B) Analog				
	C) Synchronous	D) Digital				
	SEC	TION – I				
2. Sh	ort notes (any 4) :		20			
a)	Main Frame System					
b)	Input devices					
c)	Evolution of computer					
d)	Positional and non positional num	oer system				
e)	Block diagram of computer.					
3. An	swer the following :		20			
a)	What is Computer code ? Explain	BCD, EBCDIC and ASCII in de	etail.			
b)	Define computer and explain Appl	ications of computer in various	fields.			
	OR					
b)	Difference between Note Book Co (PCs).	mputer (laptops) and Persona	l Computer			

-4-

SECTION-II

4. Short notes (any 4):

- a) Multiprogramming
- b) Simple batch processing
- c) History of Internet
- d) Data Transmission Mode
- e) High Level Language.

5. Answer the following :

- a) What do you mean by Machine Language ? Explain Assembly Language, High Level Language.
- b) What is networking ? Explain network topologies in detail.

OR

b) What is Memory ? Explain Secondary Storage Devices in detail.

20

SLR-KO – 7

Total Marks: 100

Seat	
No.	

F.Y.M.C.A. (Part – I) (Old) (Under Faculty of Engineering) Examination, 2015 **PROGRAMMING IN C**

Day and Date : Wednesday, 9-12-2015

Time : 10.30 a.m. to 1.30 p.m.

1. Multiple choice questions.

- 1) What is the similarity between a structure, union and enumeration?
 - A) All of them let you define new values
 - B) All of them let you define new data types
 - C) All of them let you define new pointers
 - D) All of them let you define new structures
- 2) If a variable is a pointer to a structure, then which of the following operator is used to access data members of the structure through the pointer variable?
 - A) · B) & C) * D) ->

3) Which of the following special symbol allowed in a variable name?

- A) * (asterisk) B) | (pipeline) C) - (hyphen) D) (underscore)
- 4) The keyword used to transfer control from a function back to the calling function is
 - A) switch B) goto C) go back D) return
- 5) If you pass an array as an argument to a function, what actually gets passed?
 - A) Value of elements in array B) First element of the array
 - C) Base address of the array D) Address of the last element of array
- 6) In which stage the following code #include<stdio.h> gets replaced by the contents of the file stdio.h
 - A) During editing B) During linking
 - C) During execution D) During preprocessing

-2-

7)	If the two strings are identical, then strcmp() function returns					
	A) –1	B) 1	C) 0	D) Yes		
8)	Which of the follo in C?	wing correctly sho	ws the hierarchy of ar	ithmetic operations		
	A) /+*-	B) *-/+	C) +-/*	D) /*+-		
9)	Which bitwise op	erator is suitable fo	or turning off a particu	lar bit in a number ?		
	A) && operator	B) & operator	C) operator	D) ! operator		
10)	What function she	ould be used to fre	e the memory allocat	ed by calloc() ?		
	A) dealloc();		B) malloc (variable	_name, 0)		
	C) free();		D) memalloc (variat	ole_name, 0)		
11)	Which of the follo	wing cannot be ch	ecked in a switch-cas	se statement ?		
	A) Character	B) Integer	C) Float	D) Enum		
12)	In the following control typedef char *char const charp P;	ode what is 'P' ? arp;				
	A) P is a constan	ıt	B) P is a character of	constant		
	C) P is character	type	D) None of above			
13)	Which of the follow string ?	wing function is mo	ore appropriate for rea	ding in a multi-word		
	A) printf();	<pre>B) scanf();</pre>	C) gets();	D) puts();		
14)	What will the fund	ction rewind() do ?				
	A) Reposition the	e file pointer to a cl	naracter reverse			
	B) Reposition the	e file pointer strear	n to end of file			
	C) Reposition the	e file pointer to beg	inning of that line			
	D) Reposition the	e file pointer to beg	ining of file			

15)) Th sp	ne maximum co baces between	mbined length of t adjacent argumen	he command-line arç ıts is	juments including the	
	A) 128 characters					
	B) 256 characters					
	C)	67 characters	i			
	D)	It may vary fro	om one operating	system to another		
16)	W	hat are the diff	erent types of real	data type in C ?		
	A)	float, double		B) short int, double	e, long int	
	C)	float, double, l	ong double	D) double, long int	, float	
17)) Th	he format identifier '%i' is also use		ed for dat	a type ?	
	A)	char	B) int	C) float	D) double	
18)	W	hich of the follo	wing is a User-de	fined data type ?		
	A)	typedef int Bo	olean;			
	B)	typedef enum	{ Mon, Tue, Wed,	Thu, Fri } Workday	s;	
	C)	struct { char r	ame [10], int age	};		
	D)	all of the ment	tioned			
19)	W	hich of the follo	owing cannot be a	variable name in C '	?	
	A)	volatile	B) true	C) friend	D) export	
20)	W	hich of the follo	owing is not possib	ole in C ?		
	A)	Array of funct	ion pointer	B) Returning a fun	ction pointer	
	C)	Comparison of	of function pointer	D) None of the me	ntioned	
			SEC	TION – I		
2. W	/rite	short note on	(any 4) :			20
1)) Fc	ormatted Input a	and Output			
2)) Br	eak and contin	ue statements			
3)) Op	perator precede	ence			
4)) Bo	ound checking	in an array			

-3-

5) Array of pointers.

3.	A) What is string ? Write string functions in detail.	10
	OR	
	A) What is pointer ? Write one program to show pointer to pointer concept.	10
	B) Write a program to show following output.	10
	1	
	2 3	
	4 5 6	
	SECTION - II	
4.	Write short note on (any 4) :	20
	1) Storage classes	
	2) Features of C preprocessor	
	3) Command line argument	
	4) Union	
	5) Bit fields.	
5.	A) Write a program to read lower case characters of one file and display it with upper case characters to other file.	10
	OR	
	A) What is call by value and call by reference ? Explain their difference.	10
	B) What is recursion ? Write a program for Fibonacci series with recursion.	10

-4-

SLR-KO – 7

SLR-KO-8

Seat	
No.	

F.Y.M.C.A. (Part – I) (Old) Examination, 2015 (Under Faculty of Engg.) DIGITAL ELECTRONICS

Day Tirr	/ an ie :	nd Date : Friday, 1 10.30 a.m. to 1.3	1-12-2015 0 p.m.		Max. Marks :	100
		Instructions	: 1) Figures to the 2) Q. 3 A and Q.: 3) Draw diagran	e right indicate fu 5 A are compulse n it necessary.	II marks. ory.	
1.	Μι	ultiple choice que	stions.			20
	1)	The no. of parity a) 4	bits in a 12-bit Ha b) 5	amming code is c) 6	d) 8	
	2)	The binary code a) 1010001	of (73) ₁₀ is b) 1000100	c) 1100101	d) 1001001	
	3)	The excess-3 co a) weighted co c) self compler	ode is also known de nenting code	as b) cyclic redur d) algebraic co	ndancy code ode	
	4)	Which of the foll	owing statement i	s true ?		
		a) $A + \overline{A}B = A$		b) $A(\overline{A} + \overline{B}) =$	= AB	
		c) $AB + A\overline{B} =$	A	d) A + C Ā B	= CA + CB	
	5)		expression is equ	uivalent to A \oplus B.		
		a) A⊙ B	b) $\overline{A} \odot \overline{B}$	c) A + B	d) $\overline{A} \oplus B$	
	6)	A bubbled NANE a) OR) gate is equivaler b) AND	t to a c) X-OR	gate d) Inverter	
	7)	The terms of car a) max	nonical SOP is cal b) maxterm	lled c) minterm	d) min	

- a) 2 inputs, 1 output
- b) 2 inputs, 2 outputs
- c) 2 inputs, 3 outputs
- d) 3 inputs, 2 outputs
- 12) A combinational logic circuit
 - a) must contain flip-flops
 - b) may contain flip-flops
 - c) does not contain flip-flops
 - d) contain latches
- 13) The output of a logic circuit depends upon the sequence in which the input is applied ? The circuit is
 - a) a combinational logic circuit
 - b) a sequential logic circuit
 - c) combinational and sequential logic circuit
 - d) none of these

-2-

		-3-	SLR-KO	- 8	
 14) A logic circuit that accepts several c get through to the output is called a) a multiplexer c) a transmitter 			al data inputs and 1 b) a demultip d) a receiver	l allows only one of them to plexer r	
15	 A flip-flop has tv a) always 0 c) always corr 	vo outputs, which plementary	are b) always 1 d) none of th	iese	
16	6) Which of the fol a) J-K flip-flop c) S-R flip-flop	lowing flip-flop is	used as a latch b) Master-sl d) T flip-flop	ave flip-flop	
17	7) How many state a) 6	es a 6-bit ripple co b) 12	ounter can have ' c) 32	? d) 64	
18	 B) The registers w a) buffer regis c) universal set 	hich are used to c ters erial register	only store the dat b) shift regis d) none of th	ta are called ster iese	
19	 Asynchronous a) ripple 	counters are called b) parallel	d as c) both	_counters. d) none of the above	
20)) The number of f a) 3	ilip-flops required b) 4	for a decade cou c) 5	unter are d) 10	
2. V	Vrite short note or	n (any 4) :			20
1) Don't care cond	ition			
2	2) Canonical SOP	and POS			
3	3) Expand $\overline{a}b + \overline{b}$	$\overline{\mathbf{b}}$ to minterm and \mathbf{i}	maxterm		
Z) BCD to binary c	onversion and vid	ceversa		
5	5) De-Morgan's Th	eorem.			
3. A	A) What is Hammi	ng code ? Explair	n its working with	9-bit Hamming code.	10
E	3) NAND and NOF	R are universal ga	tes. Explain in de	etail.	10

B) Redraw the logical expression after simplification.

4. Attempt any 4:

- a) Explain half-subtractor.
- b) Write a short note on even parity generator.
- c) Explain sequential circuit using a block diagram.
- d) Explain buffer register using a proper logic diagram.
- e) Write a short note on PIPO shift register.

5. A) Design and explain BCD-to-7 segment decoder.

B) Explain edge-triggered J-K flip-flop.

OR

B) Explain 2-bit ripple up-down counter using edge-triggered flip-flops. **10**

10

20

10

SLR-KO-9

Seat	
No.	

F.Y.M.C.A. (Under Faculty of Engg.) (Part – I) (Old) Examination, 2015 DISCRETE MATHEMATICAL STRUCTURE

Day an Time :	d Date : Monday, 10.30 a.m. to 1.30	14-12-2015) p.m.				Total Marks : 1	00
	Instructions: 1) 2)	Draw diagram w Figure to the rig	hei ht	r ever necessa indicates full	ary. ma	rks.	
1. Ch	1. Choose correct alternative :						20
1)	The union of the	sets {9, 10} and	{5, 4	4} is the set			
	a) {9, 10, 5, 4}	b) { }	c)	{9}	d)	none of these	
2)	If every element	in a set Z is also t.	an	element of se	et B	then Z is called	
	a) set	b) subset	c)	universal	d)	none of these	
3)	Intersection is de	enoted by		_			
	a) ∩	b) ∪	c)	Х	d)	none of these	
4)	A function is said	d to be	if	it is one to on	e.		
	a) bijection		b)	injection			
	c) both a) and b)	d) none of these				
5)	The dual of (a \cap	ь) is					
	a) $(a \cap b)$		b)	$(a \cup b)$			
	c) both a) and b)	d) none of these				
6)	A relation	if (a, a)	for	revery $a \in A$.			
	a) reflexive	b) irreflexive	c)	inverse	d)	none of these	
7)	A graph is						
	a) Complete gra	ph	b)	Regular grap	h		
	c) Null graph		d)	None of thes	е		

16) _____ is used to represents a finite automaton. a) 5-tuple (Q, Σ , δ , q_0 , F) b) five-tuple (F, Ω , λ , γ , τ_{3}) c) six-tuple $(\pi, \Omega, \lambda, \delta, F, q_0)$ d) none of the above 17) A regular expression is called a ______ when it represents any set. b) regular expression a) regular set c) regular grammar d) set 18) The deviations in a context-free grammar can be represented using _____ a) graphs b) trees c) both a) and b) d) none of these 19) A deviation $A \Rightarrow w$ is called a ______ if we apply a production only to the leftmost variable at every step. a) rightmost deviation b) leftmost deviation c) deviation d) none of these 20) L^T is when L is regular. a) regular grammar b) regular expression c) also regular d) not grammar

SECTION-I

- 2. Write short note on (**any 4**) :
 - A) Explain POSET and Hasse diagram.
 - B) Explain Cartesian product with an example.
 - C) Explain inorder and postorder.
 - D) Explain connected and disconnected graph.
 - E) Explain set operations.
- 3. A) What is relation ? Explain reflexive, irreflexive and transitive relation. **10**
 - B) What is graph ? Explain walk, length of walk and closed walk with an example. 10

OR

B) Explain travelling salesman problem with an example. **10**

SLR-KO-9

SECTION-II

- 4. Write short note on (**any 4**) :
 - A) Write a note on nondeterministic finite state machines.
 - B) Explain Moore machine with a neat diagram.
 - C) Construct a DFA equivalent to an NDFA whose transition table is defined by

State	а	b
q _o	q ₁ , q ₃	q ₂ , q ₃
q ₁	q ₁	q ₃
q ₂	q ₃	q ₂
(\mathbf{q}_3)		

- D) Explain in brief Pumping Lemma.
- E) Find a regular expression corresponding to each of the following subsets of $\{a,\,b\}$:
 - a) The set of all strings containing exactly 2 a's
 - b) The set of all strings containing at least 2 a's
 - c) The set of all strings containing at most 2 a's
 - d) The set of all strings containing the substring aa.

5.	5. A) Explain in detail regular expression, regular sets and regular grammar.		
	B) Write a long answer on minimization of finite automata with example.		
	OR		
	B) If G is the grammar S \rightarrow SbS a, show that G is ambiguous.	10	

20

SLR-KO – 10

Seat	
No.	

F.Y. M.C.A. (Under Faculty of Engg.) (Part – I) (Old) Examination, 2015 PRINCIPLES OF MANAGEMENT AND ORGANIZATIONAL BEHAVIOUR

Day and Date : Wednesday, 16-12-2015	Total Marks : 100
Time : 10.30 a.m. to 1.30 p.m.	
1. Objective type questions :	(1×20=20)
1) Management is	
A) an art	B) a science
C) an art and a science	D) an art not science
2) Principles of Management was contr	ibuted by
A) Mary Parkett	B) Lillian Gilberth
C) Henry Fayol	D) Elton Mayo
3) General and Industrial Management	was written by
A) Harold Koontz B) Terry	C) Louis Allan D) Henry Fayol
4) Henry Fayol concentrated on	
A) top management	B) lower level management
C) middle level management	D) workers
5) The principle seeks to ensure unity of	of action is
A) Unity of direction	B) Unity of command
C) Centralization	D) Scalar chain
6) Everything increases the importance	e of superiors role is
A) Unity of direction	B) Unity of command
C) Centralization	D) Scalar chain
The chain of superiors from the hig organization is	hest authority to the lowest level in the
A) Unity of direction	B) Unity of command
C) Centralization	D) Scalar chain

-2-

8)	 Allotment of work to each worker on the basis of the capacity of an average worker functioning in the normal working condition is 		
	A) social task planning	B)	scientific task planning
	C) not a planning	D)	scientific organizing
9)	Study of the movements of both the wasteful movement is	vork	ers and the machine to eliminate
	A) fatigue study	B)	time study
	C) motion study	D)	work study
10)	The first and foremost function of mana	age	ment is
	A) planning	B)	organizing
	C) controlling	D)	coordination
11)	The higher order needs specified by M per Herzberg.	aslo	ow is consideredas
	A) Motivators	B)	Hygiene factors
	C) Improvement factors	D)	Advance factors
12)	OB focuses at 3 levels		
	A) Individuals, Organization, Society		
	B) Society, Organization, Nation		
	C) Employee, Employer, Management		
	D) Individual, Groups, Organization		
13)	Success of each organization is depen	din	g upon the performance of
	A) Employer	B)	Management
	C) Vendor	D)	Employee
14)	Grid Organization Development was de	evel	oped by
	A) Blake and Mounton	B)	Elton Mayo
	C) F. W. Taylor	D)	Max Weber
15)	Maslow says that human beings are full will lead to their	of r	needs and wants. And these needs
	A) Job	B)	Behavior
	C) Attitude	D)	Motivation

-3-

16) Contribution/s of hun	nan relations mov	/ement is/are		
	A) Great Depression		B) Labour Movement		
	C) Hawthorne Studie	es	D) All of these		
17) focus	focuses on how to set goals for people to reach.			
	A) Equity Theory		B) Expectancy	Theory	
	C) Goal Attain Theor	ŷ	D) Goal Setting	Theory	
18) In lead	dership, there is a	a complete central	ization of authority ir	1
	the leader.				
	A) Democratic	B) Autocratic	C) Free rein	D) Bureaucratic	
19)	A process of receiv reacting to sensory s picture of the world i	ring, selecting, o stimuli or data so s	organizing, interpr as to form a mean	eting, checking and ningful and coherent	l t
	A) Attitude	B) Thinking	C) Perception	D) Communication	n
20)) is a sti employee's needs fo	rategy of job desi r psychological g	gn that increases j rowth.	ob depth by meeting	I
	A) Job rotation		B) Job enrichme	ent	
	C) Job enlargement		D) Job engagen	ient	
		SECTIO	DN – I		
2. W	/rite a short notes on (any 4) :		(4×5	=20)
1) Role of manager				
2) Kaizen				
3) Objects of managem	ent			
4) Line organization				
5) JIT.				
ЗЛ	, nswer the following :				20
J. A	N/batia (aciantifia ma	no comont' 2 Ev	alain tha aantrihuti	on of E M. Toulor	10
a,					10
D	vvnat are the differer	n Social Respons	SIDILITY OF Managen	nent?	10
	OR				
b)) Explain different leve	els of managemer	nt.		10

SLR-KO - 10

SECTION-II

-4-

- 4. Write short notes on (**any 4**) :
 - a) Communication Process
 - b) Types of Perception
 - c) Individual Behaviour
 - d) Likert's Management System
 - e) Theory 'X' and 'Y'.

5. Answer the following :

- a) Define motivation and explain techniques and theories of motivation in detail.
- b) Define Personality, Perception and Attitude and explain types of attitude in detail.

OR

b) Advantages and disadvantages of A.H. Malsow's need theory in detail.

20

SLR-KO – 11

Total Marks: 100

20

Seat	
No.	

F.Y.M.C.A. (Under Faculty of Engg.) (Part – II) Examination, 2015 OPERATING SYSTEM

Day and Date : Tuesday, 8-12-2015 Time : 10.30 a.m. to 1.30 p.m.

Instructions: 1) Figure to the right indicate full marks.2) Q. 3. A and Q. 5. A are compulsory.

1. Multiple choice questions.

- 1) To start a new process, the shell executes a ______ system call.
 - a) exec() b) fork() c) exit() d) write()
- One benefit of the ______ approach is ease of extending the operating system.
- a) mach b) microkernel c) kernel d) none of these
- 3) A process is more than the program code, which is sometimes known as the
- a) data section b) text section c) heap section d) stack section
- 4) ______ allows maximum speed and convenience of communication.
 - a) Shared memory b) Communication model
 - c) Message passing d) None of these
- 5) A ______ object allows the server to write to the socket using the routine print() and println() methods for output.
 - a) Print b) Writer c) PrintWriter d) WritePrinter
- 6) _____ pipes on Windows systems provide a richer communication mechanism than their UNIX counter parts.
 - a) ordinary b) routine c) labeled d) named
- 7) One measure of work is the number of processes that are completed per time unit, called ______
 - a) waiting time b) turnaround time
 - c) response time d) throughput

8)	The systems.	scheduling algorith	m is designed espec	ially for time-sharing
	a) round-robin	b) priority	c) shortest-job-first	d) multilevel queue
9)	The value of a _	semaphor	e can range over an i	unrestricted domain.
	a) counting	b) binary	c) mutual	d) none of these
10)	The section of section is the	code implementing	request permissior	to enter its critical
	a) entry section	b) exit section	c) in-section	d) out-section
11)	The circular wai	t condition can be p	revented by	
	a) defining a lin	ear ordering of reso	urce types	
	b) using thread			
	c) using pipes			
	d) all of the mer	ntioned		
12)	is the dea	adlock avoidance alg	gorithm.	
	a) banker's algo	orithm	b) round-robin algo	rithm
	c) tasker algorit	thm	d) bitmap algorithm	I
13)	To ensure no pre another resourc	emption, if a proces e that cannot be imr	s is holding some res nediately allocated to	ources and requests
	a) then the proc	cess waits for the re	sources be allocated	d to it
	b) the process	keeps sending requ	ests until the resour	ce is allocated to it
	c) the process i	resumes execution	without the resource	being allocated to it
	d) then all resou	urces currently being	g held are preempted	k
14)	CPU fetches the	e instruction from m	emory according to t	he value of
	a) program cou	nter	b) status register	
	c) instruction re	gister	d) program status v	vord
15)	is the ac	dress generated by	CPU.	
	a) Physical add	ress	b) Absolute addres	S
	c) Logical addre	ess	d) None of the above	/e

-2-

-3-

16)	Run time mapping from v	irtual to ph	nysical address is do	one by	
	a) memory management	unit	b) CPU		
	c) PCI		d) none of these		
17)	File type can be represen	ted by			
	a) file name b) file e	extension	c) file identifier	d) none of these	
18)	In the single level directo	ry :			
	a) all directories must ha	ve unique	names		
	b) all files must have unio	que names	3		
	c) all files must have unio	que owner	S		
	d) All of these				
19)	allocation method	d solves all	problems of contigu	uous allocation.	
	a) Linked		b) Non-contiguous		
	c) Both of these		d) None of these		
20)	The process of dividing a and write is	a disk into	sectors that the dis	k controller can read	
	a) low-level formatting		b) dividing		
	c) sectoring		d) none of these		
		SECT	TION – I		
2. W	rite short note on (any 4) :				20
1)	A layered operating syste	em			
2)	Caching				
3)	Pipes-ordinary, named				
4)	Multilevel queue scheduli	ng			
5)	The Bounded-Buffer Prob	lem			
3. A)	Explain shortest-Job-Firs	t Scheduli	ng in detail.		10
B)	Explain interprocess com	municatio	n in detail.		10
	OR				
B)	What is semaphores ? Ex	plain its us	sage and implement	ation.	10

SLR-KO - 11

-4-

SECTION-II

4.	Write short note (any 4):	20
	1) Deadlock Recovery.	
	2) Fragmentation.	
	3) LRU page replacement strategy.	
	4) File direct access method.	
	5) SSTF disk scheduling.	
5.	A) Explain the concept of swapping using proper diagram.	10
	B) Explain in detail directory structure.	10
	OR	
	B) Explain tertiary storage structure in detail.	10

Seat No.

F.Y. M.C.A. (Part – II) (Under Faculty of Engg.) Examination, 2015 **OBJECT ORIENTED PROGRAMMING USING C++**

Day and Date : Thursday, 10-12-2015 Time: 10.30 a.m. to 1.30 p.m.

> Instructions: 1) Figures to the right indicate marks. 2) Q. 3A and Q. 5A are compulsory. 3) Write a program *if necessary*.

1. Multiple choice questions :

- 1) What is the only function all C++ programs must contain?
 - a) start() b) system()
 - c) main() d) program()
- 2) Which of the following is the correct operator to compare two variables ?
 - a) := b) =
 - c) equal d) ==
- 3) Which of the following is the Boolean operator for logical-and?
 - b) && c) | d) |& a) &
- 4) Which of the following is not a type of constructor?
 - a) copy constructor b) friend constructor A
 - c) default constructor d) parameterized constructor
- 5) Which of the statements are true?
 - I. Function overloading is done at compile time
 - II. Protected members are accessible to the member of derived class
 - III. A derived class inherits constructors and destructors
 - IV. A friend function can be called like a normal function
 - V. Nested class is a derived class
 - a) I, II, III b) II, III, V
 - c) III, IV, V d) I, II, IV

SLR-KO – 12

20

Total Marks: 100

SLR-KO – 12			-2	<u>2</u> -	
6)	When the compile they are called	er cannot differen	tiate	e between two	overloaded constructors,
	a) overloaded	b) destructed	c)	ambiguous	d) dubious
7)	Which of the follo	wing operator ca	an b	e overloaded	through friend function ?
	a) ->	b) =	c)	()	d) *
8)	In which case is a) Almost in eve b) Class for whic c) Class for whic	it mandatory to p ery class ch two or more th ch copy construc	nan tor i	ide a destruc two objects w is defined	tor in a class ? rill be created
	d) Class whose	objects will be cr	eate	ed dynamical	ly
9)	It is possible to d	leclare as a frien	d		
	a) A member fur	nction	b)	A global func	tion
	c) A class		d)	All of the abo	ove
10)	Member functiona) Are always inb) Are not inline	ns, when defined line	with	nin the class s	pecification
	c) Are inline by od) Are not inline	default, unless th by default	ey a	are too big or	too complicated
11)	The process of o function in the pu	perator overloadi ublic part of the c	ing i lass	nvolves decla 3.	aration of the
	a) operator	b) function	c)	class	d) none of these
12)	func	tion may be us ary operator.	ed i	n the place	of member functions for
	a) member	b) friend	c)	inline	d) none of these
13)	Operator overloa enhances its	ading is one of th	ne ir	nportant feat	ure of C++ language that
	a) exhaustibility		b)	inheritance	
	c) properties		d)	none of these	e
14)	A pure virtual fur virtual function, s	nction that is not the derived cla	: del Iss i	fined in a der s an	ived class remain a pure
	a) class		b)	template clas	SS
	c) abstract class	6	d)	none of these	e

		-3-	SLR-KO – 12
15)	In a multilevel inheritance the const	ructors will be executed in order	of
	a) Inheritance	b) class written	
	c) both a) and b)	d) none of the above	
16)	Polymorphism means one name h	aving	
	a) single forms	b) multiple forms	
	c) both a) and b)	d) none of these	
17)	Run time polymorphism is achieved through the base class.	ved only when i	s accessed
	a) member function	b) inline function	
	c) virtual function	d) none of these	
18)	A file can be opened in two way class and using the member funct	s by using the constructor fun ion of the class.	ction of the
	a) fopen()	b) open()	
	c) read()	d) none of these	
19)	classes and functio types and thus make the program	ns eliminate code duplication ⁻ development easier and mana	for different geable.
	a) template	b) abstract	
	c) library	d) none of these	
20)	The STL consists of three main co	mponents	
	a) container	b) algorithm	
	c) iterators	d) all of these	
	SEC	CTION – I	
2. Wr	ite a short note on (any 4) :		20
1)	Inline functions		
2)	Switch statement		
3)	Destructor		
4)	Scope resolution operator		
5)	Derived data types.		

SL	R-KO – 12	-4-	
3.	A) Explain class with example.B) Explain function overloading w OB	ith example.	10
	B) Write a program to print follow 1 22 333 4444 55555 	ing output using for loop.	10
4.	 Write a short note on (any 4): 1) Class to basic type conversion 2) Hierarchical inheritance 3) This pointer 4) getline() and write () function 	SECTION – II	20
5.	5) Pure virtual function.A) Explain virtual function with exB) Explain polymorphism with exaOR	ample. ample.	10
5.	B) Write a program to add two com	plex numbers using binary operator overloading.	10

Total Marks: 100

Seat No.

F.Y.M.C.A. (Under Faculty of Engg.) (Part – II) Examination, 2015 MICROPROCESSOR

Day and Date : Saturday, 12-12-2015 Time : 10.30 a.m. to 1.30 p.m.

> *Instructions*: 1) Figures to the *right* indicate *full* marks. 2) Q. 3. A) and Q. 5. A) are *compulsory*.

1. MCQ/Objective type questions :

1)	Theł	ous is unidirectiona	ıl.			
	a) address	b) data	c)	control	d)	none of these
2)	8085 has	8-bit general p	our	pose data registe	ers.	
	a) 2	b) 8	c)	6	d)	10
3)	Ther a) PC	egister is used to s b) SP	eqı c)	uence the execut Accumulator	tion d)	on instructions. B
4)	In a 2-byte instructi	on, the first byte s	pe	cifies the		
-	a) data	b) operand	c)	opcode	d)	byte
5)	Inad	dressing mode, the	e o	perands are spe	cifie	ed within the
	instruction itself.					
	a) direct	b) register	c)	implicit	d)	immediate
6)	In instru	uction, the contents	s of	faccumulator ar	e co	opied into
	I/O port specified by	y operand.		_		_
	a) OUT	b) IN	c)	PUSH	d)	POP
7)	The instr	uction is used to co	mp	lement the conte	ents	of accumulator.
	a) COM	b) CMP	c)	CME	d)	CMA
8)	is the	e time period of a s	sing	le cycle of the c	locł	c frequency.
	a) Fetch	b) Decode	c)	T-state	d)	Instruction
9)	mac	hine cycle is first c	ycl	e of instruction o	cycl	e.
	a) Operand fetch		b)	Opcode fetch		
	c) Memory read		d)	I/O write		
10)	ALE will be high for	T-s	tate	e during a machi	neo	cycle.
	a) 1	b) 2	c)	3	d)	4
11)	inter	rupts are the interru	upt	s which can be ig	gno	red.
	a) Non-maskable		b)	Maskable		
	c) Vectored		d)	Non-vectored		Р

SLR-K	O – 13		-2-				
12)	is a	non-maskat	ole interrup	t.			
,	a) TRAP	b) RST 5.	5 c)	RST 6.5	d)	RST 7.5	
13)	The	instruction	is used to e	enable all maska	able	e interrupts.	
	a) DI	b) El	c)	EA	d)	EN	
14)	RIM is used to che	ck whether _					
	a) Write operation	is done	b)	Interrupt is ma	ske	d	
	c) Both of these		d)	None of these			
15)	8255 is a	pin IC.	-)	40	-1\		
	a) 30	b) 20	C)	40	d)	25	
16)	In response to IN I	R signal, 80	185 sends 1	TDAD	d)	None of these	
47)	a) INTA				u)	None of these	
17)	a) Simple I/O	also known	as	mode.			
	c) Bidirectional		d)	None of these			
18)	In s	erial commu	unication, s	start and stop bi	t foi	each character	
,	is present.		,	·			
	a) Synchronous	b) Asynch	ronous c)	Parallel	d)	None of these	
19)	8251 IC is also kno	own as					
	a) PPI	b) USART	- c)	8-bit IC	d)	None of these	
20)	How many addres	s lines are r	equired fo	r a 2k memory c	hip	?	
	a) 10	b) 11	c)	12	d)	13	
		S	SECTION -	-1			
2 Wri	ite short answer on	(anv 4) [.]					20
<u>2</u> . (V)	Features of 8085	(arry +)					20
 Arithmetic instructions 							
2) 2)	Domultiploving of	iulis. addrogo opd	l data linca				
3)	Demultiplexing of a		i data imes	•			
4)	Stack related instr						
5)	Define following w	ith one exan	nple :				
	b) 2 byte instruction	n n					
	c) 3 byte instruction	on.					

	-3- SLR-KO-	- 13
3.	A) State and explain addressing modes of 8085.	10
	B) Explain pin description of 8085. OR	10
	B) Explain machine cycle for any instruction from logical instruction group.	10
	SECTION – II	
4.	Solve any 4 :	20
	A) What are the various types of interrupts in 8085 ?	
	B) Explain Vectored interrupt and non-vectored interrupt.	
	C) Write short note on Interfacing of Input Device.	
	D) Explain Serial Communication using SOD pin.	
	E) Interface a 2K byte ROM with 8085 having starting address 0000H, using NAND gate.	
5.	A) Write down the difference between IO Mapped IO and Memory Mapped IO.	10
	B) Explain with a neat diagram the Functional block diagram of Programmable interval Timer 8253.	10
	OR	
	B) Draw and explain in brief the block diagram of Programmable Peripheral Interfacing (8255).	10

 \sim

SLR-KO – 14

Seat	
No.	

FYMCA (Part – II) (Under Faculty of Engg.) Examination, 2015 STATISTICAL AND NUMERICAL METHODS

Day Tim	y and $y = 1$	Date : Tuesday,	15-12-2015		Total Marks	: 100	
	10.1	Instructions	1) All questions a	re compulsorv			
			2) Use of scientifi	c calculator is allo	ved.		
1.	Cho	oose the correct a	alternative :			20	
	1)	Cramer's rule fa a) Zero	ils if Δ is b) Positive	c) Negative	d) Non-zero		
	2)	In the regula Fals is replaced by	si method of finding	g the real root of an o	equation the curve Al	В	
		a) Chord AB	b) Line AB	c) Tangent AB	d) Radius AB		
	3)	To find a value n a) Newtons form c) Finite differen	lear the begin of th vard formula nce formula	e table use b) Newtons backward formula d) Infinite difference formula			
	4)	In Gauss elimina matrix. a) Unit c) Lower triangu	ation method we r	educe the coefficient matrix to b) Upper triangular d) Diagonal			
	5)	Lagrange's inter a) Equally space c) Equally space	polation formula ca ed ed or not	an be applied whether the values of x _i are b) Not equally spaced d) Same			
	6)	A root of the equal $(-1, -2)$	uation x ³ – x – 9 = 0 b) (–2, –3)	0 lies between c) (1, 2)	d) (2, 3)		
	7)	In case of bisect a) Linear	ion method, the co b) Quadratic	onvergence is c) Verv slow	d) All of these		
	8)	A root of the equ	uation $x - \cos x = 0$ b) 0 and 1	lies between c) -1 and 0	d) -1 and -2		
	9)	Which of the foll equations ?	owing is the iterat	ion method for solv	ving the simultaneou	S	
		a) Gauss eliminc) Gauss Seida	ation I	b) Gauss Jorda d) Cramer's	n		

SLR-K	O – 14		-2-	
10)	Gauss elimination a) Sometimes c) Most of the time	method	leads to a solution. b) Always d) None	
11)	Mean and variance	e are equal for		
12)	a) Binomial	D) Poisson	C) Both a and b	u) inormai
12)	a) $H_1: \mu < \mu_0$	b) $H_1: \mu > \mu_0$	c) $H_1: \mu \neq \mu_0$	d) All of these
13)	In Chi-square test frequencies is alwa	, the sum of devi ays	ations of the obse	rved and expected
	a) Zero	b) One	c) Two	d) Three
14)	The maximum size as	e of type-I error, w	hich we are prepar	red to risk is known
	a) Hypothesis		b) Level of signific	ance
	c) Type II error		d) Test of signification	ance
15)	The relation betwee regression be	en coefficient of	correlation and the	two coefficients of
	a) $r = \sqrt{b_x b_y}$	b) $r = \sqrt{b_{xy}b_{yx}}$	c) $r = \frac{\sigma_x}{\sigma_y}$	d) None of these
16)	Standard deviation	of Binomial distrik	oution is	
	a) pq	b) npq	c) √npq	d) \sqrt{pq}
17)	The product of two	coefficients of reg	gressions lies betwe	en
	a) -1 to 1	b) 0 to 1	c) 0 to ∞	d) -∞ to 0
18)	The total number o the	f possible outcome	es of a random expe	eriment is known as
	a) Favourable eve	nts	b) Exhaustive eve	ents
	c) Both a and b		d) None of these	
19)	A large sample has	s size equal to or n	nore than	
	a) 30	b) 20	c) 500	d) 1000
20)	If b_{yx} and b_{xy} both a) Positive	are positive then r b) Negative	r is c) Zero	d) None of these

SECTION-I

2. Solve any four :

- 1) Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ using Trapezoidal rule.
- 2) Give the value :

Х:	5	7	11	13	17			
f(X):	150	392	1452	2366	5202			
Evaluate f(9) using Lagrange's method.								

3) Solve using Gauss-elimination method :

2x - y + 3z = 9; x + y + z = 6; x - y + z = 2

4) From the following table, estimate the number of students who obtained marks between 40 and 45 :

Marks :	30-40	40-50	50-60	60-70	70 – 80
No. of students :	31	42	51	35	31

- 5) Write a C program to implement Regula-Falsi method.
- 6) Evaluate $\int_{0}^{1} \frac{x^2}{1+x^3} dx$ using Simpson's $\frac{1}{3}$ rule.

3. Solve any one :

1) Find the root of the equation $x^3 - 4x - 9 = 0$ using bisection method, correct up to 3 decimal place.

2) Compute the value of
$$\int_{0}^{\frac{\pi}{2}} \sin x \, dx$$
 by using Simpson's $\frac{1}{3}$ rd rule.

4. Solve the following :

(8×1=8)

(8×1=8)

Find the value of f(1.6) using Newton's Forward Formula if

X :	1	1.4	1.8	2.2
f(X):	3.49	4.82	5.96	6.5

(6×4=24)

-4-

SECTION - II

5. Solve any four :

- 1) Name the various methods of sampling and explain stratified sampling in brief.
- 2) Explain axiomatic probability with suitable example.
- 3) In a year there are 956 births in town A, of which 52.5% were males while in town B there are 450 births. The proportion of males in town B is 0.432. Is there any significant difference in the proportions of male births in two towns?
- 4) What is conditional probability? Explain it with suitable example.
- 5) A committee of 4 people is to be appointed from 3 officers of the production department, 4 officers of the purchase department, 2 officers of the sales department and 1 CA. Find the probability of forming the committee in the following manner.
 - i) There must be one from each category.
 - ii) It should have at least one from the purchase department.
- 6) Tickets numbered 1 to 100 are well-shuffled and a number is drawn. What is the probability that the tickets drawn will be :
 - i) an odd number
 - ii) a number 7 or multiple of 7.

6. Solve any one :

- 1) Explain Baye's theorem in detail.
- 2) Investigate the association between the darkness of eye color in father and son from the following data :

Color of Son's eye	Dark	Not Dark	Total
Dark	48	90	138
Not Dark	80 782		862
Total	128	872	1000

Color of Father's eye

7. Solve the following :

Find:

i) byx			ii) bxy			iii) r from the given data		
X	:	50	45	38	35	28	22	
у	:	58	65	70	80	95	100	

 $(6 \times 4 = 24)$

 $(8 \times 1 = 8)$

(8×1=8)

Seat No.

F.Y.M.C.A. (Part – II) (Under Faculty of Engg.) Examination, 2015 SOFTWARE ENGINEERING

Day and Date : Thursday, 17-12-2015

Time : 10.30 a.m. to 1.30 p.m.

1. Choose the correct alternative :

- 1) The spiral model of software development
 - a) Ends with the delivery of the software product
 - b) Is more chaotic than the incremental model
 - c) Includes project risks evaluation during each iteration
 - d) All of the above

2) System analysis and design phase of Software Development Life Cycle (SDLC) includes which of the following

- a) Parallel run b) Sizing
- c) Specification Freeze d) All of the above
- 3) Which of the following is not a diagram studied in Requirement Analysis?
 - a) Use Cases b) Entity Relationship Diagram
 - c) State Transition Diagram d) Activity Diagram
- 4) Which of the items listed below is not one of the software engineering layers?
 - a) Process b) Manufacturing
 - c) Methods d) Tools
- 5) Which of these terms are level names in the Capability Maturity Model ?a) Performed b) Repeated c) Optimized d) Both a and c
- 6) The linear sequential model of software development is
 - a) A reasonable approach when requirements are well defined
 - b) A good approach when a working program is required quickly
 - c) The best approach to use for projects with large development teams
 - d) An old fashioned model that cannot be used in a modern context

7) Everyone on the software team should be involved in the planning activity so that we can

- a) reduce the granularity of the plan
- b) analyze requirements in depth
- c) get all team members to "sign up" to the plan
- d) begin design

SLR-KO – 15

Total Marks: 100
SLR-KO – 15

-2-

- 8) Which of the following is not one of the principles of good coding?
 - a) Create unit tests before you begin coding
 - b) Create a visual layout that aids understanding
 - c) Keep variable names short so that code is compact
 - d) Write self-documenting code, not program documentation
- 9) During project inception the intent of the tasks are to determine
 - a) basic problem understanding b) nature of the solution needed
 - c) people who want a solution d) all of the above
- 10) The best way to conduct a requirements validation review is to
 - a) examine the system model for errors
 - b) have the customer look over the requirements
 - c) send them to the design team and see if they have any concerns
 - d) use a checklist of questions to examine each requirement
- 11) A decision table should be used
 - a) To document all conditional statements
 - b) To guide the development of the project management plan
 - c) Only when building an expert system
 - d) When a complex set of conditions and actions appears in a component
- 12) Which of the following strategic issues needs to be addressed in a successful software testing process ?
 - a) Conduct formal technical reviews prior to testing
 - b) Specify requirements in a quantifiable manner
 - c) Use independent test teams
 - d) Both a and b
- 13) Bottom-up integration testing has as it's major advantage(s) that
 - a) major decision points are tested early
 - b) no drivers need to be written
 - c) no stubs need to be written
 - d) regression testing is not required

-3-

SLR-KO – 15

- 14) Which of the following are characteristics of testable software ?
 - a) observability b) simplicity
 - c) stability d) all of the above
- 15) Which of the following need to be assessed during unit testing?
 - a) algorithmic performance b) error handling
 - c) execution paths d) both b and c

16) Acceptance tests are normally conducted by the

- a) developer b) end users
- c) test team d) systems engineers
- 17) Black-box testing attempts to find errors in which of the following categories
 - a) incorrect or missing functions b) interface errors
 - c) performance errors d) all of the above
- 18) A new ______ is defined when major changes have been made to one or more configuration objects.
 - a) entity b) item c) variant d) version
- 19) Which of the following is not a principle that should guide business process reengineering?
 - a) capture data at each source
 - b) fully redocument legacy processes
 - c) organize around outcomes
 - d) put decision point where work is performed

20) _____ is the process of determining whether the output of one phase of software conforms to that of its previous phase.

- a) validation
- c) both a and b

- b) verification
- d) none of above

SECTION-I

2. Solve any four :

- 1) Spiral model
- 2) Characteristics of software
- 3) Data Dictionary
- 4) Types of decision tables
- 5) Data design.

(5×4=20)

SL	R-KO – 15 -4-	
3.	A) Discuss SDLC in brief.B) Explain fact finding techniques in details.	10 10
	OR B) What is SRS ? Explain components of SRS.	10
	SECTION – II	
4.	 Solve any four : 1) System testing 2) SQA Activity 3) Reengineering 4) Features of modern GUI 5) User Interface Design. 	(5×4=20)
5.	A) Explain equivalence partitioning and boundary value analysis.B) Explain integration testing and validation testing activity.	10 10
	B) Explain characteristics of maintenance and its side effects.	10

Seat

No. S.Y.M.C.A. (Under Faculty of Engg.) (Part – I) Examination, 2015

Day and Date : Monday, 7-12-2015 Time : 3.00 p.m. to 6.00 p.m.

Instructions: 1) Draw diagram wherever necessary.2) Figure to the right indicates full marks.

- 1. Multiple choice questions :
 - 1) _____ is a pile in which items are added at one end removed from the other.

DATA STRUCTURE

- A) Stack B) Queue
- C) List D) None of the above
- 2) In the ______ traversal we process all of a vertex's descendents before we move to an adjacent vertex.
 - A) Depth First B) Breadth First
 - C) With First D) Depth Limited
- 3) In ______ search start at the beginning of the list and check every element in the list.
 - A) Linear search B) Binary search
 - C) Hash Search D) Binary Tree search
- 4) Which of the following is not the internal sort?
 - A) Insertion Sort B) Bubble Sort C) Merge Sort D) Heap Sort
- 5) What will be the value of top, if there is a size of stack STACK_SIZE is 5?
 - A) 5 B) 6 C) 4 D) None
- 6) Any node is the path from the root to the node is called
 - A) Successor node B) Ancestor node
 - C) Internal node D) None of the above

SLR-KO – 16

Total Marks: 100

SLR-KO-16

7) Which is/are the application(s) of stack?

	A)	Function calls				
	B)	Large number a	rithmetic			
	C)	Evaluation of ar	ithmetic expressio	ns		
	D)	All of the above				
8)	Wr	nich of the followi	ng data structure i	is no	on-linear type ?	
	A)	Strings	B) Lists	C)	Stacks	D) Tree
9)	Arr	ays are best data	a structures			
	A)	For relatively pe	ermanent collection	ns o	f data	
	B)	For the size of the changing	he structure and t	he c	lata in the struc	ture are constantly
	C)	For both of abov	e situation			
	D)	For none of the a	above			
10)	Wr	nich of the followi	ng data structures	are	e indexed struct	ures?
	A)	Linear arrays		B)	Linked lists	
	C)	Graphs		D)	Trees	
11)	Wr	en does top valu	ie of the stack cha	nge	es?	
	A)	Before deletion		B)	While checking	underflow
	C)	At the time of de	eletion	D)	After deletion	
12)	A d oth	lirected graph is er vertex in the d	if there ligraph.	is a	path from each	vertex to every
	A)	Weakly Connect	ted	B)	Strongly Conne	ected
	C)	Tightly Connecte	ed	D)	Linearly Conne	cted
13)	Α_	is a gra	aph that has weigh	nts c	of costs associat	ted with its edges.
	A)	Network		B)	Weighted graph	ı
	C)	Both A) and B)		D)	None A) and B))
14)		is very	y useful in situatio	n w	hen data have	to stored and then
	reti	rieved in reverse	order.			
	A)	Stack	B) Queue	C)	List	D) Link list

		-3-	SLR-KO -	- 16
15)	In linked list, we traverse the list in	n		
	A) Only one direction	B	3) Two direction	
	C) Sometimes A) or B)	D) None of these	
16)	A set of trees is called a			
	A) Graph	E	3) Forest	
	C) Nodes	D)) Sub trees	
17)	A graph is a tree if it has propertie	S		
	A) It is connected	E	3) There are no cycles in the graph	
	C) A) and B)	D) None of these	
18)	Drawback of chaining method			
	A) Maintaining linked list	E	B) Extra storage space for link fields	
	C) A) and B)	D) Neither A) nor B)	
19)	Insort the number of p	asses	s is equal to the number of maximum	
	digits contained in an given array.	_		
	A) Radix sort	E	3) Selection sort	
	C) Insertion sort	D)) Merge sort	
20)	A binary search tree whose left su most 1 unit is called	btree	and right subtree differ in hight by at	
	A) AVL tree	E	3) Red-black tree	
	C) Lemma tree	D) None of the above	
	SEC	TION	-1	
2. Wr	ite short note on following (any 4) :			20
1)	Types of data structures.			
2)	Applications of stack and queue.			
3)	Circular linked list.			

- 4) Priority queue.
- 5) Program of linear search.

SLI	R-K	CO – 16 -4-	
3.	A)	What is stack ? How to perform push, pop and display operation Explain in detail.	n in stack ? 10
		OR	
	A)	Write a program of insertion sort and show it's implementation.	10
	B)	What is linked list ? Write insert operation for singly linked list a linked list.	and doubly 10
		SECTION – II	
4.	Wı	rite short note on following (any 4) :	20
	1)	Hashing methods.	
	2)	BFT for graph.	
	3)	Path length.	
	4)	Strictly binary tree.	
	5)	Height balanced tree.	
5.	A)	What is hash collision ? Explain collision resolving techniques i	n detail. 10
		OR	
	A)	What is graph ? Write operations on graph.	10
	B)	What is binary tree ? Explain tree traversal methods with exam	ple. 10

SLR-KO-17

Total Marks: 100

20

Seat No.

S.Y.M.C.A. (Part – I) (Faculty of Engg.) Examination, 2015 SYSTEM PROGRAMMING

Day and Date : Wednesday, 9-12-2015 Time : 3.00 p.m. to 6.00 p.m.

Instructions : 1) Q. 1 is compulsory.2) Figures to the right indicate full marks.

1. Choose correct alternatives :

- 1) The ______ is a system program which accepts the specification of a program in some specification language.
 - a) program generator b) linker
 - c) program counter d) reserve pointer
- 2) The source program in analyzed during the _____ phase of language processing.
 - a) Syntax b) Analysis c) Semantic d) Lexical
- 3) ______ which contains information about identifiers used in the source program.
 a) Identifier table b) Symbol table c) Literal table d) None of these
 4) The ______ is passed to semantic analysis to determine the meaning
 - of the statements.
 - a) Intermediate code b) Statement code
 - c) Analytical code d) Binding code
- 5) The problem of forward refers is tackled by using a technique called_____
 - a) Forward patchingb) Back trackingc) Forward trackingd) Back patching

6) Memory allocation is performed by using a data structure called_____

- a) Location counter b) Program counter
- c) Pointer d) Program pointer
- 7) The START and END statements are ______ to the assembler.
 - a) Pools b) Literal
- c) Directives d) Code

SLR-KO – 17 -2-					
8)	implies ger of a specific macro o	neration of stateme call.	ents	that are tailored	d to the requirements
	a) Semantic expans	ion	b)	Macro definition	on
	c) Macro expansion		d)	None of these	
9)	Ap	oints to the first w	ord	of the last reco	ord in the stack.
	a) Reverse pointer		b)	Record base p	pointer
	c) Reserve pointer		d)	Base pointer	
10)	Ade	fines either a new	ope	eration or a new	method of declaring
	data in a programmir	ig language.	-)	N/a awa	
	a) System	D) POOIS	C)	Macro	d) None of these
11)	LINKING IS a process (of binding			link time addresses.
	a) Internal Location		d)	Nono of the ak	
10)	A binding is the accord	s	u) to	f a program of	
12)	a) Namo	b) Value	ر e ر م		d) None of the above
12)	An expression tree is	b) value	U) Not	i yp e av trop that rop	(a) None of the above
13)	of an expression.	3	yrn	ax liee lialiep	
	a) Abstract	b) Concrete	c)	Private	d) Public
14)	Software tools are				
	a) User interface		b)	Program edito	r
	c) Both a) and b)		d)	None of the at	oove
15)	The	program loads a b	ina	ry program in m	emory for execution.
	a) Translator	b) Linker	c)	Loader	d) All of the above
16)	Debug monitor provi	des the facility to $_$			
	a) Assign a new valu	ue to variables	b)	Display of var	iables value
	c) Both a) and b)		d)	None of the at	oove
17)	addres	s assigned by the l	inke	er while produci	ng a binary program.
	a) Translator origin	b) Linked origin	c)	Load origin	d) All of the above
18)	A is	a system that su	itat	oly interfaces a	program with other
	programs or human	users in its enviro	nme	ent.	
	a) Assembler	b) Compiler	C)	Software tool	d) All of the above

			3- SLR	-KO-17
_	19) \$	Screen editor		
	ä	a) Views entire text at a time	b) Screen full text at time	
	(c) Both a) and b)	d) None of the above	
2	20) _	is a user interface r	nanagement system.	
	á	a) Menu lay b) Hyper Caro	I c) Window OS d) All of the ab	ove
		SECT	ION – I	
2.	Wri	te short note on (any 4) :		20
	1) I	Language processing development	ool	
	2) I	Binding		
	3) \$	Simple assembly scheme		
	4) I	Expansion time loop		
	5) I	Macro definition and call.		
3.	A) I	Explain in detail pass-1 assembler v	vith algorithm.	10
	B) \	What is fundamental of language pr OR	ocessing ? Explain in detail.	10
	B) I	Explain design of macro preprocess	or in detail.	10
		SECT	ION – II	
4.	Wri	te short answer on (any 4) :		20
	1) /	Analysis of source program		
	2) \	Word processors		
	3) I	MS-DOS linker		
	4) l	User interface		
	5) I	Execution of program.		
5.	A) I	Explain in brief N-pass compiler.		10
	B) I	Explain program relocation and prog OR	gram linking with an example.	10
	B) I	Describe role of debug monitors role	e in program development.	10

SLR-KO – 18

Seat	
No.	

S.Y.M.C.A. (Part – I) (Under Faculty of Engg.) Examination, 2015 COMPUTER ORGANIZATION AND ARCHITECTURE

Day Time	ar e:	nd Date : Friday, 1 3.00 p.m. to 6.00	1-12-2015 p.m.		Total Marks : 100
	In	structions : 1) F 2) G	figures to the righ Q. 3 a and Q. 5 a a	n t indicate full marks are compulsory .	
1.	M	CQ/Objective type	e question paper :		20
	1)	The list of instrue	ctions is called		
		a) Software	b) Program	c) Coding	d) Application
	2)	During the exect	ution of a program	which gets initialize	d first is
		a) MDR	b) IR	c) PC	d) MAR
	3)	When a subrouti instructions store	ne is called, the ac ed in/on the	ddress of the instructi 	on following the CALL
		a) stack pointer		b) accumulator	
		c) program cour	nter	d) stack	
	4)	connec	cts an external de	vice to the System B	us.
		a) I/O module	b) DMA	c) ALU	d) Control Unit
	5)	An exception co the CPU is called	ndition in a compu d	uter system caused b	y an event external to
		a) Interrupt	b) Halt	c) Wait	d) Process
	6)	The CPU instruc	tions are written i	n language.	
		a) Assembly	b) Machine	c) High-Level	d) C Language

SLR-KO - 18

-2-

7)	We usually refer to each of the interface of the external device as a			
	a) Socket b) Port	c) Input d) Output		
8)	The registers, ALU and the int called as	terconnection between them are collectively		
	a) Process route	b) Information trail		
	c) Information path	d) Data path		
9)	A microprogram written as strin	ng of 0's and 1's is a		
	a) symbolic microinstruction	b) binary microinstruction		
	c) symbolic microprogram	d) binary microprogram		
10)	contains the address	of an instruction to be fetched.		
	a) Instruction Register	b) Memory Address Register		
	c) Program Counter	d) Memory Buffer Register		
11)	provide a permane text.	nt record on paper of computer output data or		
	a) Monitor b) VDU	c) Printer d) Tape		
12)	are special hardware supervise and synchronise all i	components between CPU and peripherals to nput and output transfers.		
	a) Interface units	b) Communication		
	c) Link	d) None of these		
13)	In data transfer, the reclock with the CPU registers.	egisters in the interface do not share a common		
	a) synchronous	b) asynchronous		
	c) serial	d) parallel		
14)	In I/O method, each da the program.	ata item transfer in initiated by an instruction in		
	a) programmed	b) interrupt-driven		
	c) DMA	d) none of these		
15)	The devices that provide backu	p storage are called		
	a) main memory	b) cache memory		
	c) auxiliary memory	d) primary memory		

SLR-KO - 18

16)	The dynamic RAM	∕luses to	store binary informat	ion.	
,	a) flip-flops	b) transistors	c) MOS	d) capacitors	
17)	A memory unit h number of bits.	aving a storage c	apacity of 128 words	requires	
	a) 4	b) 10	c) 7	d) 8	
18)	In me logic circuits for m	emory, each cell natching contents	must have storage ca with external argume	apability as well as nt.	
	a) primary	b) secondary	c) main	d) associative	
19)	is achie	eved by distributing	g the data among multi	ple functional units.	
	a) parallel proces	sing	b) sequential proces	sing	
	c) both of these		d) none of these		
20)	In pipelining, eac combinational cire	ch con cuit.	sists of an input regi	ster followed by a	
	a) pipe	b) unit	c) segment	d) stream	
		SEC	ΓΙΟN – I		
2. W	rite short note on (any 4) :			20
a)	Register Stack				
b)	Control unit of bas	sic computer			
c)	Binary micro prog	Iram			
d)	Interrupt cycle				
e)	Micro instruction	format.			
3. Ar	swer the following	:			20
a)	What is Instructio	n Code ? Explain	with micro programme	ed example.	
b)	Explain addressir	ng modes in detail.			
	OR				

-3-

b) Explain memory reference instructions in detail.

SLR-KO – 18

-4-

SECTION-II

4.	Attempt any four :	20
	a) Explain I/O bus and interface modules.	
	b) Explain IOP.	
	c) Write a short note on asynchronous serial transfer.	
	d) Explain associative memory.	
	e) Explain the concept of virtual memory.	
5.	A) Illustrate address mapping using pages using an example.	10
	B) Explain DMA transfer in a computer system using a proper diagram.	10
	OR	
	B) What is pipelining ? Explain using an example.	10

SLR-KO – 19

S.Y. M.C.A. (Under Faculty of Engg.) (Part – I) Examination, 2015 COMPUTER NETWORKS

Day ar	nd Date : Monday, 14-	12-2015		Total Marks :	100
Time :	3.00 p.m. to 6.00 p.m				
1. Cł	noose the correct alter	mative :			20
1)	In OSI network architecture, the routing		ng is performed by		
	A) network layer		B) data link laye	r	
	C) transport layer		D) session layer		
2)	OSI lay	ers are covered ir	n the X.25 standard	ł.	
	A) Two	B) Three	C) Seven	D) Six	
3)	might be needs.	used by a compar	ny to satisfy its grow	ring communications	
	A) front end process	or	B) multiplexer		
	C) controller		D) all of the abov	/e	
4)	DNS can obtain the and vice versa.		of host if its don	nain name is known	
	A) Station address	B) IP address	C) Port address	D) Checksum	
5)	A) Asynchronous C) Simplex	cess of obtaining a	amplitude of a signa B) Sampling D) Half-Duplex	al at regular intervals.	
6)	is/are	the drawbacks of	Ring Topology.		
	A) Failure of one corB) Adding or removinC) If the central hubD) Both of A and B	nputer, can affecting the computers fails, the whole ne	t the whole network disturbs the netwo etwork fails to oper	c ork activity rate	
7)	net other by cables in a s	work is used to co single location.	onnect a number o	f computers to each	
	A) WAN	B) LAN	C) MAN	D) Both B and C	

SLR-KO	- 19
--------	------

-2-

8)	With Slotted Aloha, a			_sends out sma	all clock tick packets
	to the outlying station	IS.			
	A) distributed clock		B)	synchronized	l clock
	C) centralized clock		D)	digital clock	
9)	It is the mode of comr	nunication betwe	en usl	two devices in v v is called	which flow of data is
	A) Multiplexing	B) Simplex	C	Half-Duplex	D) Full Duplex
10)		ology if there are	•, • •	dovices in a na	by the back dovice
10)	has n-1 ports for cab	les.	en		etwork, each device
	A) Mesh	B) Star	C)	Bus	D) Ring
11)	The network layer co	ncerns with			
	A) bits	B) frames	C)	packets	D) none
12)	User datagram proto	col is called conne	ecti	onless becaus	е
	A) all UDP packets a	re treated indepe	ende	ently by transpo	ort layer
	B) it sends data as a	stream of related	d pa	ackets	
	C) both (A) and (B)				
	D) none				
13)	Which address identi	fies a process on	nał	nost ?	
	A) physical address		B)	logical addres	SS
	C) port address		D)	specific addre	ess
14)	is an unrel	able connectionle	ess	protocol respo	nsible for source-to-
	destination delivery.				
	A) IPv4	B) IPv64	C)	IPv88	D) IPv100
15)	Logical addressing a	nd routing is the fu	unc	tion of	layer.
	A) Transport	B) Network	C)	Application	D) Physical
16)	Mail services are beir	ng made available	e by		layer.
	A) Application		B)	Network	
	C) Data link layer		D)	None	

		-3	3-	SLR-KO – 19
17)	reduc	ces the memory req e networks with large	juirements at s e number of ro	some penalty on the path outers.
	A) Hierarchical R	outing	B) Flooding]
	C) Distance Vect	or	D) None	
18)	TCP provides			
	A) Process-to-pro	ocess	B) Full-dup	lex
	C) Connection-or	riented service	D) All the m	nentioned
19)	The DNS address to a nam	e.	solver, maps a	name to an address or an
	A) Server	B) Network	C) Client	D) None
20)	A substitution cipl	her replaces	charact	er with another character.
	A) Four	B) Three	C) Two	D) One
		SECTI	ON – I	
2. W	rite short note on ((any 4) :		20
a)	Pure and slotted a	aloha		
b)	Network operating	g system		
c)	Ethernet			
d)	PSTN			
e)	Design issues for	r the layers.		
3. Ar	nswer the following	j :		20
a)	Define Switching	. Explain different ty	pes of switchi	ng.
b)	Explain error dete	ection and correction	n codes in det	ail.
	OR			

b) Explain guided transmission media in detail.

SLR-KO – 19

-4-

SECTION-II

4.	Write short note on (Attempt any 4) :	(4×5=20)
	1) MIB	
	2) Packet Filter Firewall	
	3) Network security	
	4) TCP	
	5) Subneting.	
5.	Write long answers.	
	A) Explain Congestion Control Algorithms in detail.	10
	B) Explain TCP Connection Establishment and Connection Release.	10
	OR	
	B) Explain UDP Protocol and its Segment Header with diagram.	10

Seat No.

S.Y.M.C.A. (Part – I) (New) (Under Faculty of Engg.) Examination, 2015 COMPUTER GRAPHICS

Day and Date : Wednesday, 16-12-2015 Time : 3.00 p.m. to 6.00 p.m.

1. Multiple choice questions :

1) Graphics and image processing technique used to produce a transformation of one object into another is called

SECTION-I

- a) Animation b) Morphing
- d) None of the above c) Half toning
- 2) Each pixel has _____ basic color components.
 - a) Two or three b) One or two
 - c) Three or four d) None of these
- The transformation in which an object is move in a minimum distance path from one position to another is called
 - a) Rotation b) Replacement
 - c) Translation d) Scaling
- 4) (2, 4) is a point on a circle that has center at the origin. Which of the following points are also on circle ?
 - a) (2, -4)b) (-2, 4)
 - c) (-4, -2)d) All of above
- 5) The transformation that produces a parallel mirror image of an object are called
 - a) Rotation b) Reflection
 - c) Translation d) Scaling
- 6) A composite transformation matrix can be made by determining the of matrix of the individual transformation.
 - b) Product a) Sum
 - c) Difference d) None of the above

SLR-KO – 20

Total Marks: 100

SLR-K	D-20	-2-		
7)	Beam penetration method is usua	lly ι	ised in	
	a) LCD	b)	Raster Scan Display	
	c) Random Scan Display	d)	DVST	
8)	identifies the p	oictu	ire portions that are exteri	ior to the clip
	window.			
	a) Interior clipping	b)	Exterior clipping	
	c) Extraction	d)	None of the above	
9)	The region against which an obje	ct is	clipped is called a	
	a) Clip window	b)	Boundary	
	c) Enclosing rectangle	d)	Clip square	
10)	Coordinates of viewport are know	n as	8	
	a) World coordinates	b)	Polar coordinates	
	c) Screen coordinates	d)	Cartesian coordinates	
	SEC	TIC	DN – II	
11)	Intechnique of mathematical or probabilistic mod	imp del.	roving appearance it uses	
	a) Image enhancement	b)	Restoration	
	c) Both a) and b)	d)	Representation	
12)	is a device for c	onv	erting the output of the phy	sical sensing
	device into digital form.			
	a) Printer	b)	Digitizer	
	c) Loader	d)	None of these	
13)	Digitizing the amplitude value is ca		d	
	a) Quantization	b)	Amplitude	
	c) Sampling	d)	Variation	
14)	The expression for power law (Ga	Imm	na) transformation is	
	a) $S = rc - \gamma$	b)	$S = cr + \gamma$	
	c) $S = Cr^{T}$	d)	None of the above	
15)	process involve contrast enhancement and sharpe	es p enin	rimitive operation such as r ıg.	reduce noise,
	a) Low-level	b)	Mid-level	
	c) High level	d)	Intermediate level	

		-3- SLR-KO -	- 20
16)	processing dea	als with tool for extracting image component	
	that are useful in representation a	and description of shape.	
	a) Restoration	b) Acquisition	
	c) Morphological processing	d) Compression	
17)	procedure part	titions an image into its constituent parts or	
	objects.	h) Osmanasian	
	a) Restoration	b) Compression	
10)	c) Recognition		
18)	In log transformation the value of $a_1 = 0$	r is given as	
	a) $1 \ge 0$	b) $r = 0$	
10)		u = 0	
19)	an image for analyzing the impor	tance of each bit.	
	a) Bit plane slicing	b) Contrast stretching	
	c) Histogram	d) All of the above	
20)	Dpi stands for		
	a) Dot per pixel	b) Dot per inch	
	c) Double per inch	d) Dot pixel inch	
	SE	CTION – I	
2. Wr	ite short note on (any 4) :		20
1)	Applications of computer graphic	s and image processing.	
2)	Advantages and disadvantages of	of DDA and Bresenhams algorithm.	
3)	Reflection.		
4)	2 D viewing.		
, 5)	Interior and exterior clipping.		
3. A)	Explain Cohan Sutherland line clir	pping algorithm.	10
B)	Explain Bresenham's line generat	tion algorithm with its implementation	10
-)	OR		
B)	Write any one example to show w	indow to viewport coordinate transformation	.10

SL	R-KO – 20	-4-	
		SECTION – II	
4.	Write a short note on (any 4) :		(5×4=20)
	1) 3D scaling.		
	2) Restoration and segmentatio	n.	
	3) Spatial and intensity resolution	on.	
	4) Perspective projection.		
	5) Gamma ray and X-ray imagir	ng.	
5.	A) Fundamental steps in image	processing.	10
	B) Explain 3D-transformation.		10
	OR		
	B) Explain different intensity tran	nsformation function.	10

SLR-KO – 21

Max. Marks: 100

Seat	
No.	

S.Y. M.C.A. (Under Faculty of Engg.) (Part – II) Examination, 2015 RELATIONAL DATABASE MANAGEMENT SYSTEM (New)

Day and Date : Friday, 18-12-2015 Time : 3.00 p.m. to 6.00 p.m.

> Instructions : 1) Figures to the right indicate full marks. 2) Q.3. A and Q.5. A are compulsory.

1. MCQ/Objective type Questions.

2	0
	-

- 1) In E-R diagrams, relationships are represented by
 - a) ellipses b) rectangles
 - c) diamonds d) double rectangles
- 2) An entity set that does not have sufficient attributes to form a primary key is called as
 - a) relationship set b) weak entity set
 - c) strong entity set d) none of these
- 3) The process of synthesizing multiple entity sets into a higher level entity set based on common features is called as
 - a) specialization b) generalization
 - c) top-down d) none of these
- 4) Database ______ is a snapshot of the data in the database at a given instant in time.
 - a) schema b) instance c) logical d) physical
- 5) Relational algebra is an example of _____ language.
 - a) declarative b) non-procedural
 - c) high level d) procedural

SLR-K	(O – 21	-2-		
6)	comma	ands allow users t	to insert, modify ar	nd delete the data in
	a) DDL	b) DCL	c) DML	d) DQL
7)	function	ns in SQL take a c	collection of values	as input and return a
	a) composite	b) unary	c) aggregate	d) none of these
8)	The use of SQL com a) T-SQL	mands within a h b) PL-SQL	ost language prog c) QBE	ram is called as d) Embedded SQL
9)	A multicolumn prima a) unique	ry key is called _ b) union	primai c) candidate	ry key. d) composite
10)	In SQL, the a) GRANT	statement is u b) REVOKE	used to provide aut c) AUTH	horization. d) None of these
11)	was p than 3NF.	proposed as a si	mpler form of 3NF	but is more stricter
	a) 2NF	b) 4NF	c) BCNF	d) None of these
12)	a) 1NF	d on the concept b) 2NF	of full functional de c) 3NF	ependency. d) BCNF
13)	is the fas a) main memory c) cache memory	stest and most co	ostly form of storag b) flash memory d) optical disk	je.
14)	A interfa of the disk drive.	ces between con	nputer system and	the actual hardware
	a) disk controller	b) disk system	c) jukebox	d) none of these
15)	structu in a block.	re is commonly u	ised for storing vai	riable-length records
	a) heap file	b) hashing	c) slotted-page	d) bitmap
16)	A is a unit various data items.	t of program exect	ution that accesses	and possibly updates
	a) entity	b) relation	c) transaction	d) none of these

		-3	-	SLR-KO –	21
17)	A transaction that co a) active c) partially committe	mpletes its exec	cution successfully b) aborted d) committed	' is said to be	
18)	In two-phase locking obtain any new locks a) growing	protocol, a tran in b) shrinking	saction may relea phase. c) locked	se locks but may not d) none of these	
19)	The computers in a c a) disks	listributed syster b) PC	m are also referred c) sites	as d) none of these	
20)	A parallela) coarse-grainc) both of these	machine uses th	ousands of smalle b) fine-grain d) none of these	r processors.	
		SECTI	ON – I		
2. W	rite short notes (any 4	i):			20
1)	Weak entity sets				
2)	Tuple relational calcu	ulus			
3)	Views in SQL				
4)	'Project' operation in	relational algebr	a		
5)	Authentication.				
3. A)	Write a note on exter	nded ER features	s using proper exa	mples.	10
B)	Explain in detail set o OR	perations in SQ	L.		10
B)	Write a note on sub-	queries in SQL u	sing proper examp	ole.	10

SLR-KO – 21

-4-

SECTION-II

4.	Write short notes (any 4):	20
	1) Decomposition	
	2) First Normal Form	
	3) Tertiary storage	
	4) Sequential file organization	
	5) ACID properties of a transaction.	
5.	A) Explain RAID levels with proper diagram of each level.	10
	B) What is concurrency control ? Explain locking techniques in detail. OR	10
	B) Explain centralized and client-server system architecture in detail.	10

Seat

No.

S.Y.M.C.A. (Part – II) (Under Faculty of Engg.) (New) Examination, 2015 OPERATIONS RESEARCH

Day and Date : Saturday, 19-12-2015 Time : 3.00 p.m. to 6.00 p.m.

- 1. Choose the correct answer :
 - 1) A feasible solution to LP problem
 - i) Must satisfy all of the problems constraints simultaneously
 - ii) Need not satisfy all the constraints, only some of them
 - iii) Must be corner point of the feasible region
 - iv) Must optimize the value of the objective function
 - 2) At every interaction of the simplex method, for minimization problem, a variable in the current basis is replaced with another variable that has
 - i) a positive Cj-Zj value

iii) $C_i - Z_i = 0$

- ii) a negative Cj-Zj valueiv) None of the above
- 3) For any primal problem and its dual
 - i) Optimal value of objective functions is same
 - ii) Primal will have an optimal solution if and only if dual does too
 - iii) Both primal and dual cannot be infeasible
 - iv) All of the above
- 4) The occurrence of degeneracy while solving a transportation problem means that
 - i) Total supply equals total demand
 - ii) The solution so obtained is not feasible
 - iii) The few allocations become negative
 - iv) None of the above

SLR-KO – 22

(20×1=20)

Max. Marks: 100

SLR-KO – 22

- 5) While solving an assignment problem, an activity is assigned to a resource through a square with zero opportunity cost because the objective is to
 - i) Minimize total cost of assignment
 - ii) Reduce the cost of assignment to zero
 - iii) Reduce the cost of that particular assignment problem to zero
 - iv) All of the above
- 6) When sum of losses to one player is equal to the sum of gains to other player in a game, this situation is known as
 - i) Biased game ii) Zero-sum game
 - iii) Fair game iv) All of the above
- 7) To convert >= inequality constraints into equality constraints, we must
 - i) Add a surplus variable
 - ii) Subtract an artificial variable
 - iii) Subtract a surplus variable and add artificial variable
 - iv) Add a surplus variable and subtract an artificial variable
- 8) The purpose of dummy row or column in assignment problem is to
 - i) Obtain balance between total activities and total resources
 - ii) Prevent a solution from becoming degenerate
 - iii) Provide a means of representing a dummy problem
 - iv) None of the above
- 9) The size of payoff matrix of a game can be reduced by using the principle of
 - i) Game inversion

- ii) Rotation reduction
- iii) Dominance
- iv) Game transpose
- 10) A saddle point exist when
 - i) Maxmin value = minmax value
 - ii) Minmax value = minmin value
 - iii) Maxmin value = maxmax value
 - iv) None of the above
- 11) Which of the following relationship is not true?
 - i) $Ws = Wq + 1/\mu$ ii) $Ls = \lambda Ws$
 - iii) $Ls = Lq + 1/\lambda$ iv) $Lq = \lambda Wq$

- 12) A calling population is considered to be infinite when
 - i) All customers arrive at once
 - ii) Arrivals are independent of each other
 - iii) Arrivals are independent upon each other
 - iv) All of the above
- 13) In a CPM/PERT network the critical path is the
 - i) Lowest path through the network
 - ii) Highest path through the network
 - iii) Shortest path through the network
 - iv) Longest path through the network
- 14) When activity times are uncertain
 - i) Assume they are normally distributed
 - ii) Calculate the expected time, using (to + 4tm + tp)/6
 - iii) Use the most likely time
 - iv) Calculate the expected time, using (to + tm + tp)/3
- 15) Replace an item when
 - i) average annual cost for n years becomes equal to current /annual running cost
 - ii) next year running cost is more than average cost of nth year
 - iii) present years running cost is less than the previous year's average cost
 - iv) all of the above
- 16) The group replacement policy is suitable for identical low cost items which are likely to
 - i) fail over a period of time
 - ii) fail suddenly
 - iii) fail completely and suddenly
 - iv) none of the above
- 17) The problem of replacement is felt when job performing units fail
 - i) Suddenly ii) Gradually
 - iii) Both i) and ii) iv) i) but not ii)

SLR-KO – 22	-4-
18) The sudden failure among ite	em is seen as
i) progressive	ii) retrogressive
iii) random	iv) all of the above
19) The graphical method of LP p	problem uses
i) Objective function equati	ion ii) Constraint equation
iii) Linear equation	iv) All of the above
20) The objective of network anal	lysis is to minimize total project cost, is
i) False ii) True	iii) Can't say iv) None

SECTION-I

2. Attempt any four :

1) Maximize $Z = 3X_1 + 5X_2$

Subject to the constraints

$$X_1 + X_2 \le 2$$

 $2X_1 + X_2 \ge 3$

$$X_1, X_2 >= 0.$$

2) Find the Saddle point (or points) and hence solve the games :

The payoff matrix is given by

		Player B					
		1	2	3	4		
	1	- 5	2	1	20		
Player A	2	5	5	4	6		
	3	4	- 2	0	- 5		

3) Write the Dual of following LPP :

Maximize
$$Z = 2X_1 + X_2 + 3X_3$$

Subject to $X_1 + X_2 + 2X_3 <= 5$
 $2X_1 + 3X_2 + 4X_3 = 12$
 $X_1, X_2, X_3 >= 0.$

4) Find IBFS by North West corner method :

	D1	D2	D3	Supply
01	12	14	15	16
O2	6	10	1	11
O3	18	19	8	15
Demand	13	7	22	

5) Solve the following games :

Player BIIIPlayerI
$$\begin{bmatrix} 6 & 2 \\ 4 & 6 \end{bmatrix}$$

В

7

8

_

6

3. Attempt any one :

1

2

3

4

1) Solve the assignment problem :

Α

4

_

3

6

2)	Apply the principle of Duality and solve the following problems :
	$Minimize Z = 3X_1 + 2.25X_2$

С

5

7

5

4

D

6

4

3

2

Subject to

$$2X_1 + 4X_2 \ge 40$$

 $3X_1 + 2X_2 \ge 50$
 $X_1, X_2 \ge 0.$

-5-

SLR-KO – 22

Plaver B

10

4. Use Dominance principle to solve following game :

			,	
		1	2	3
	1	7	6	3
Player A	2	- 2	2	- 3
	3	5	9	1

SECTION - II

- 5. Attempt **any four** :
 - 1) Customer arriving at a box office window, being manned by a single individual, according to a Poisson input process with a mean rate of 30 per hour. The time required to serve a customer has an exponential distribution with a mean of 90 seconds. Find the average waiting time of a customer. Also, determine the average number of customers in the system and the average queue length.
 - 2) Find the sequence that minimizes the total elapsed time to complete the following jobs in the order M1 and M2 on machines and find total elapsed time.

Job No.	1	2	3	4	5	6
Machine M1	3	8	5	3	5	6
Machine M2	5	3	7	4	2	8

3) The data on the running costs per year and resale price of equipment A, whose purchase price is Rs. 2,00,000 are as follows :

Year	1	2	3	4	5	6	7
Running Cost (Rs.)	30,000	38,000	46,000	58,000	72,000	90,000	1,10,000
Resale Value (Rs.)	1,00,000	50,000	25,000	12,000	8,000	8,000	8,000

What is the optimum period of replacement?

(4×5=20)

4) Using Following Table :

Activity	1 – 2	1 – 3	2 – 4	3 – 4	3 – 5	4 – 9	5 – 6
Duration	4	1	1	1	6	5	4
Activity	5 – 7	6 – 8	7 – 8	8 – 9	8 – 10	10 9 – 10	
Duration	8	1	2	1	8	7	

- 1) Draw an network diagram
- 2) Indicate the critical path.
- 5) A machine operator has to perform three operations on a number of different jobs. The time required to perform these operations (in minutes) for each job is known and is given below :

Job	Time for Turning	Time for Threading	Time for knurling
1	3	8	13
2	12	6	14
3	5	4	9
4	2	6	12
5	9	3	8
6	11	1	13

Determine the order in which the jobs should be processed in order to minimize the total time required to turn out all the jobs.

- 6. Attempt the following :
 - 1) The data collected in running a machine, the cost of which is Rs. 60,000. Are given below :

Year	1	2	3	4	5
Resale Value	42000	30000	20400	14400	9650
Running Cost	18000	20270	22880	26700	31800

Determine the optimum period for replacement of the machine.

Activity Name	Event	1 – 2	1 – 3	1 – 4	2 – 5	3 – 5	4 – 6	5 – 6
	Event Name	А	В	С	D	Ш	F	G
Time	t _o	5	5	11	5	11	11	17
Required	t _m	5	11	11	5	29	29	29
in day	t _p	23	17	29	5	47	41	53

 A small project is composed of 7 activities whose time estimate are given below :

- i) Find the expected duration and variance for each activity.
- ii) Draw PERT network.
- iii) Find critical path of expected project and expected project length.
- iv) The earliest and latest time to reach each event.
- v) Calculate variance and SD of the project length.

OR

2) A computer contains 10,000 resistors. When any register fails, it is replaced. The cost of replacing a resister individually is Re. 1 only. If all Resistors are replaced at the same time, the cost per resistor would be reduced to 35 Paisa. The percentage of surviving resistors say S(t) at the end of month t and the probability of failure P(t) during the month t are as follows :

Т	0	1	2	3	4	5	6
S(t)	100	97	90	70	30	15	0
P(t)	-	0.03	0.07	0.20	0.40	0.15	0.15

What is the optimal replacement plan?

SLR-KO – 23

Seat	
No.	

S.Y.M.C.A (Under Faculty of Engg.) (Part – II) (New) Examination, 2015 DESIGN AND ANALYSIS OF ALGORITHM

Day and Date : Monday, 21-12-2015 Total. Marks: 100 Time : 3.00 p.m. to 6.00 p.m. Instructions: 1) Draw diagram wherever necessary. 2) Figure to the **right** indicates **full** marks. 20 1. Multiple choice guestions : 1. Time complexity of guick sort in worst case is a) O(n²) b) O(n) c) O(n + 1) d) None of these 2) The ______ of an algorithm is the amount of computer time it needs to run to completion. a) Time complexity b) Space complexity c) Both a) and b) d) None of these 3) _____ approach can be used in merge sort. a) Divide and conquer b) Greedy d) None of these c) Both a) and b) 4) The Tower Hanoi puzzle can be solved by ______ algorithm. d) None of above a) Recursive b) Iterative c) Randomized 5) Reordering of elements as per the pivot element in guick sort is called as a) Rearranging b) Partitioning c) Sorting d) Swapping 6) Which of the following best described sorting? a) Accessing and processing each record exactly once b) Finding the location of the record with a given key c) Arranging the data in some given order

d) All of above

SLR-K	(0 – 23	-2						
7)	Given 2 sorted lists of 'm' and 'n' respectively. Number of comparisons needed in the worst case by the merge sort algorithm will be							
	a) mn	b) max(m, n)	c) min(m, n)	d) m + n – 1				
8)	Any subset that sat	tisfies the constrain	nts is called					
	a) Feasible solution	on	b) Optimal solutiond) Optional solution					
	c) Final solution							
9)	An algorithm that m	nakes use of rando	mizer is called	algorithm.				
	a) Recursive	b) Iterative	c) Randomized	d) None of above				
10)	Algorithms that are definite and effective are also called as							
	a) Computational	Procedures	b) Theoretical Procedures					
	c) Hypothetical P	rocedures	d) Imaginary Procedure					
11)	Let the modulli $p1 = 3$, $p2 = 5$, $p3 = 7$ by using these modulli the integer 10 is represented as							
	a) (1, 0, 3)	b) (1, 0, 2)	c) (0, 0, 1)	d) (1, 1, 0)				
12)	A vertex 'V' in a connected graph G is an point iff the deletion of vertex V together with all edges incident to 'V' disconnects the graph into two or more non-empty components.							
	a) Intersection	b) Union	c) Bisection	d) Articulation				
13)	According to BFS required.	if G is not connec	ted then	calls of BFS are				
	a) At least 2	b) Minimum one	c) Maximum one	d) None of these				
14)	Atree	of graph G is the t	ree which contains	all the vertices of G.				
	a) Spanning	b) Binary	c) Both a) and b)	d) None of these				
15)	GCD (22, 8) is							
	a) 1	b) 2	c) 3	d) 4				
16)	In repre	esentation storage	depends on non-ze	ero values.				
	a) Sparse	b) Dense	c) Number	d) Graph				
- 17) LCBB stands for _____
 - a) Least Cost Branch and Bound
 - b) Linear cost Branch and Bound
 - c) Low Cost Branch and Bound
 - d) None of these
- 18) _____ is useful in one context because it allows the reformulation of the way addition, subtraction and multiplication.

-3-

- a) Algebraic problems b) Modular arithmetic
- c) Interpolation d) Evaluation
- 19) A row or column is said to be reduced iff it contains at least one zero and all remaining entries are _____
 - a) non negative b) minimum cost
 - c) reduced cost d) both a) and b)
- 20) The ______ problem asks for the smallest integer M for which graph G can be colored

b) m-colorability optimization problem

- a) chromatic colorability problem
- c) m-colorability problem d) None of these

SECTION-I

- 2. Write short note on following (any 4) :
 - 1) Graham's Scan
 - 2) 0/1 knapsack problem
 - 3) Strassen's matrix multiplication
 - 4) Job sequencing with dead lines
 - 5) Reliability design.
- 3. A) Write computation of w, c, r in optimal binary search tree for the following example :

Let n = 3 and (a1, a2, a3) = (if, do, while). Let $P[1:3] = \{3, 3, 1\}$ and

q [0:3] = {2, 3, 1, 2}.

20

	 B) Explain binary search algorithm with suitable example. OR
	B) What is Randomized algorithm ? Write and explain algorithm to find the repeated element from a [1 : n].
	SECTION - II
4.	Write short note on following : (any 4)
	1) Mixed radix representation
	2) N queens problem

-4-

10

20

- 4) Recursive algorithms of Inorder, Preorder, Postorder
- 5) Evaluation and Interpolation.

3) knapsack problem

SLR-KO – 23

- 5. A) Let n = 4 {W1, W2, W3, W4} = {11, 13, 24, 7} and m = 31. Find all possible subsets of w that sum to m, draw a static and dynamic state space tree that will be generated.
 10
 - B) Define graph and explain graph traversal techniques. 10OR
 - B) Write an algorithm for algebraic problems.

Seat	
No.	

S.Y. M.C.A. (Part – II) (Under Faculty of Engg.) Examination, 2015 **PROGRAMMING IN JAVA (New)**

Day and Date : Tuesday, 22-12-2015 Total Marks: 100 Time : 3.00 p.m. to 6.00 p.m. *Instructions*: 1) Figures to the *right* indicate marks. 2) Q. 3 A and Q. 5 A are compulsory. *3)* Write a program *if necessary*. 1. Multiple choice questions : 1) Navigate methods can be linked dynamically at _____ a) run-time b) compile time c) Both a) and b) d) None of these 2) _____ method replaces destructor function in Java. b) finalize a) virtual c) finally d) none of these 3) The following tags are mandatory while creating an HTML document to display an applet. a) name, code, height b) codebase, height, width c) code, height, width d) code, name 4) thread is the default thread which starts executing immediately when we start the program. a) run b) main c) init d) wait 5) Which of the following is used in inter-thread communication? a) wait(), notify(), notifyall() b) wait(), join() d) None of these c) notify(), join(), notifyall()

6) Which of the following will not generate an error?

- a) A catch block without a try block
- b) Presence of code between try and catch blocks
- c) A try block with either a catch or a finally block
- d) A finally block without a try block

SLR-K	0–24	-2-			
7)	Which of these interactiona) ComponentListerc) ActionListener	erfaces define four n ener	neth b) d)	ods ? ContainerListener InputListener	
8)	Which of these area) Process basedc) Process and Th	e types of multitaskii read based	ng ? b) d)	Thread based None of the mentic	oned
9)	Which of these are a) TEXT_CHANGE c) TEXT_VALUE_	e integer constants o ED CHANGED	of Te b) d)	extEvent class ? TEXT_FORMAT_0 TEXT_SIZE_CHAN	CHANGED NGED
10)	MouseEvent is sub a) ComponentEve c) ItemEvent	oclass of which of th nt	nese b) d)	classes ? ContainerEvent InputEvent	
11)	Swing components a) Pluggable look c) Platform indepe	are and feel ndent	b) d)	Light weight All of these	
12)	JFrame is derived a) Light weight c) No weight	from the Frame clas	s ar b) d)	nd is a Heavy weight None of these	_container.
13)	Swing makes the c setting is a) Non-editable c) Drop-down list	lefault combo box in 	to a b) d)	dropdown list beca Editable None of these	use the default
14)	JDBC is nothing bu a) Classes	it a Java b) Interfaces	 c)	API	d) None of these
15)	is a server which may l a) Direct	connection that a JE pe remote.	b) b)	client makes direct Indirect	ly to the DBMS
	c) Both b) and c)		d)	None of these	

		-3-	SLR-KO-	-24
16)	The ResultSet tuple is received and the	l its content can be examine	d by executing	
	a) SQL query	b) Java code		
	c) Both a) and b)	d) None of these		
17)	Implementation of remote interface	easily		
·	a) Extends classes	b) Can't extends clas	ses	
	c) Can't implement's interface	d) None of these		
18)	Java programming pro-	vides facility to share data be	tween different	
	a) RMI b) JDBC	c) Socket	d) All of these	
19)	can be used directly transport of packets.	to support fast, connectionl	ess, unreliable	
	a) UDP b) TCP	c) IP	d) All of these	
20)	represents standard	I way to identify a resource.		
	a) URI	b) URL		
	c) Both a) and b)	d) None of these		
	SEC	TION – I		
2. Wı	rite short note on (any 4):			20
a)	Interfaces			
b)	Types of exception.			
c)	Difference between applet and app	lication		
d)	Thread priorities.			
e)	Example of FileOutputStream.			
·3 Δ)	What is inter-thread communication	n with example		10
	What is user defined executions 2	Write one example to show	, how to prosto	10
ы)	user defined exceptions.	while one example to show	now to create	10
	OR			
B)	Write any five event listener interfa	ces with their purpose and	example.	10

SLR-KO-24

-4-

SECTION-II

4.	Wr	rite a short note on (any 4) :	20
	a)	Java swing label control.	
	b)	Socket and ServerSocket.	
	c)	Java URL class.	
	d)	JDBC-ODBC bridge driver.	
	e)	Steps of creating RMI application.	
5.	A)	Describe different steps to connect database to Java applications. Write a program to explain above steps.	10
	B)	Explain the concept of Tabbed Pane in Swing. Explain the use of JTabbedPane with program example.	10
		OR	
	B)	Explain the concept of Panel in swing. Explain the use of JPanel with program example.	10

SLR-KO – 25

Seat	
No.	

S.Y.M.C.A. (Part – II) (New) (Under Faculty of Engg.) Examination, 2015 SOFTWARE TESTING AND QUALITY ASSURANCE (Elective – I)

Day and Date : Wednesday, 23-12-2015 Time : 3.00 p.m. to 6.00 p.m.

> 1) Draw diagram wherever necessary. Instructions : 2) Figure to the **right** indicates **full** marks.

1. MCQ/Objective Type Questions :

- 1) Which of the following is not a level in CMM?
 - a) Managed b) Adhoc c) Predictable d) Optimised

2) It is a set of levels that defines a testing maturity hierarchy

- a) TIM (Testing Improving Model) b) TMM (Testing Maturity Model)
- c) TQM (Total Quality Management) d) None of these

3) Phase Definition. It will come under a) CMM Level 1 b) CMM Level 2 c) CMM Level 3 d) None of these

4) Which one of the following is not a software process quality?

- b) Portability c) Timeliness d) Visibility a) Productivity
- 5) An important metric is the number of defects found in internal testing compared to the defects found in customer tests, Status of test activities against the plan, Test coverage achieved so far, comes under
 - a) Process Metric b) Product Metric
 - d) None of these c) Test Metric
- 6) Which Software Development Life Cycle Model will require to start testing activities when starting development activities itself?
 - a) Water fall model b) Spiral Model
 - c) V-model d) Both a) and c)
- 7) Management and Measurement, it will come under
 - a) CMM Level 1 b) CMM Level 2 c) CMM Level 3 d) CMM Level 4
- 8) Project management processes are established it will come under
 - a) CMM Level 2 b) CMM Level 3 c) CMM Level 4 d) CMM Level 5

Total Marks : 100

9) The SQA plan identifies

-2-

	a) Evaluations to be	e performed			
	b) Audits to be performed				
	c) Documents to be produced by the SQA group				
	d) All of the above				
10)	MTTF stands for				
	a) Measure Time To	o Failure	b)	Multiple Time To	o Failure
	c) Mean Time to Fa	ilure	d)	None of these	
11)	Glen Myers states "A a) discovered	successful test is of b) technical	ne t c)	hat uncovers an a undiscovered	as-yet error". d) all of these
12)	According to the test	ing principles of Dav	vis, a	all tests should be	e traceable to
	a) developer	b) customer	d)	technical	d) none of these
13)	The two types of inte	egration testing are			
	a) Top-down and B	ottom-up	b)	Top-up and Bot	tom-down
	c) Alpha and beta		d)	b) and c)	
14)	Find out the one whi	ich is not the compo	ner	nt of testers work	bench?
	a) input c) procedures to ch	eck	d)	procedures to de	D
15)	The unit testing is	oriented	ч)	looun	
10)	a) white-box	b) black-box	c)	both a) and b)	d) none of these
16)	testing	is conducted at the	de	veloper's sit by e	nd-users.
	a) Beta	b) Unit	c)	Alpha	d) Manual
17)	is a softv	vare metric that prov	vide	s a quantitative m	easure of the logical
	complexity of a prog	ram.	L-)	O and the file of the second	- h ! -
	a) Data flow analys	als Dexity	(a (b	None of these	aiysis
18)	Review meeting sho	ould be involved wit	u, h	neonle	
10)	a) two and three	b) three and five	c)	four and six	d) eight and ten
19)	In validation testing	activities the Low-I	leve	el testing involves	s testing
	one at a time or in c	combination.	۲		
	 a) individual progra c) complete system 	in components	(a (h	functional products	ct components
20)	Static analysis is an	alvsis done on	ч)	without actu	ally executing it
20)	a) input	b) source code	c)	output	d) a) and c)
	-		•	-	

SECTION-I

2.	Solve any four :	5×4=20)
	 Clean room strategy. Little wood and Verrall's model. Process classification. Need of SQA. Process and Product Quality. 	
3.	 A) Explain defect removal efficiency and cost impact of software defects. B) What is software reliability ? Explain any four software reliability models OR 	10 . 10
	B) How SQA group serve as customer's in-house representative ?	10
	SECTION – II	
4.	 Write short notes on (any 4): A) System testing B) Beta testing C) Security testing D) Review types E) Computer Aided Software Testing Tools. 	20
5.	A) Write a long answer on Seven-steps of Testing process. OR	10
	A) Explain Static Testing Vs Dynamic Testing.B) Write a note on Functional Testing.	10

SLR-KO – 26

Max. Marks: 100

20

Seat	
No.	

S.Y.M.C.A. (Part – II) (Faculty of Engineering) (New) Examination, 2015 Elective – 1 : UNIX OPERATING SYSTEM

Day and Date : Wednesday, 23-12-2015 Time : 3.00 p.m. to 6.00 p.m.

Instructions: 1) Figures to the right indicate full marks.
2) Q. 3A and Q. 5A are compulsory.
3) Draw diagram if necessary.

1. Choose the correct answer :

 is used to controlling processes. 				
	a) wait	b) stat	c) wc	d) none of these
2)	The shell usually e command to termi	executes a comm nate before read	and ing the next comm	_, waiting for the and line.
	a) Synchronously	b) Linearly	c) Serially	d) None of these
3)	In algorithm getblk the block but fails	k, the kernel sear to find it there.	ches the hash que	ue that should contain
	a) brelse	b) breada	c) inode	d) getblk
4)	The they maintain a co	algorithms h mmon, single ima	elp insure file syst age of disk blocks o	tem integrity, because contained in the cache.
	a) buffer	b) disc	c) filesys	d) none of these
5)	The changes the orde	system call ad r in which a proce	ljusts the value of t ess reads or writes	he file table offset and s a file.
	a) read	b) write	c) map	d) seek
6)	Using algorithm _ file.		the kernel assign	s an inode for the new
	a) ialloc	b) alloc	c) ialc	d) None of these

SLR-KO	D – 26		-2-	
7)	Each pregion en virtual address o	try points to a reg f the region in the	gion table entry an process.	d contains the starting
	a) region	b) ptrreg	c) pregion	d) preg
8)	In the algorithm _ for signals the pr does not ignore.	, the l ocess wants to ig	kernel simply turns phore but notes the	off the signal indication e existence of signals it
	a) psig	b) exec	c) brk	d) issig
9)	A is that can be treate	a contiguous are ed as a distinct ol	a of the virtual addr pject to be shared o	ess space of a process or protected.
	a) region	b) args	c) table	d) none of these
10)	In, region, identifying executable file.	the kernel search g it as the one who	nes the active regionse inode pointer m	on list for the file's text natches the inode of the
	a) xalloc	b) iptr	c) iexec	d) ialloc
11)	is a	C library routine	that calls brk.	
	a) Sbrk	b) Sbk	c) AAbrk	d) Hbrk
12)	The	device is a block	device in a configu	urable section of a disk.
	a) map	b) swap	c) ram	d) conf
13)	A process severs	s its connection to	o an open device b	y it.
	a) closing		b) releasing	
	c) opening		d) option a) or op	otion b)
14)	The table and the cha	_ to driver interfact aracter device sw	ce is descried by t itch table.	he block device switch
	a) kernel	b) user	c) system call	d) none of the above
15)	is us	sed to controlling	processes.	
	a) wait	b) stat	c) wc	d) none of these
16)	The value of a	semap	phore can range or	ly between 0 and 1.
	a) counting	b) binary	c) mutual	d) none of these

-3-

	17)	7) are prevented by requiring that critical regions be protected by locks			
		a) mutual exclusion	b)	race conditions	
		c) semaphores	d)	none of these	
	18)	A process uses the sy	yste	em call to send a message.	
		a) msgsnd	b)	mgsnd	
		c) msgsend	d)	mgsend	
	19)	returns various statis	tics	about the process.	
		a) stat	b)	sta	
		c) stasti	d)	statst	
	20)	Process tracing consists of traced process and controlling the	exe	of the debugger process and the ecution of the traced process.	
		a) Serialization	b)	Linearization	
		c) Synchronization	d)	None of these	
		SECT	10	N – I	
2.	Wr	ite short answer on (any 4) :			20
	1)	Operating system services			
	2)	Buffer pool structure			
	3)	Write system call			
	4)	The U area			
	5)	Scheduling criteria			
3.	A)	How the kernel change the size of a	re	gion ? Explain in detail.	10
	B)	Write and explain algorithm for conv file system.	/er	sion of byte offset to block number in	10
		OR			

B) Explain process state transition diagram in detail. 10

SLR-KO - 26

-4-

SECTION-II

4.	Write short answer on (any 4):	20
	1) Operations for fork	
	2) Mapping a file into region	
	3) Streams	
	4) Clists	
	5) Semaphores.	
5.	A) Write an algorithm for opening and closing device.	10
	B) Explain allocation of swap space in detail.	10
	OR	
	B) List functions of clock handler.	10

SLR-KO – 27

Seat	
No.	

S.Y.M.C.A. (Part – II) (Under Faculty of Engg.) (New) Examination, 2015 OBJECT ORIENTED ANALYSIS AND DESIGN (Elective – I)

Day and Date : Wednesday, 23-12-2015 Time : 3.00 p.m. to 6.00 p.m.

1. MCQ.

20

Total Marks: 100

- 1) A ______ is a language whose vocabulary and rules focus on the conceptual and physical representation of a system.
 - a) High level language b) Low level language
 - c) Modeling language d) None of these
- 2) A ______ is a physical element that exists at run time and represents a computational resource.
 - a) Artifacts b) Components
 - c) States d) None of these
- 3) The ______ of a system encompasses the classes, interfaces, and collaborations that form the vocabulary of the problem and its solution.
 - a) design view b) implementation view
 - c) interaction view d) deployment view
- 4) A responsibility is a _____ of a class.
 - a) contract b) obligation c) both a and b d) none of above
- 5) An ______ is a structural relationship that specifies that objects of one thing are connected to objects of another.
 - a) Association b) Generalization
 - c) Specialization d) Both b and c
- 6) An ______ is a named property of a class that describes a range of values that instances of the property may hold.
 - a) Attribute b) Object c) Instance d) None of above

SLR-K	0 – 27	-2	-		
7)	"Java : : awt" is ex	ample of			
	a) Simple name		b)	Qualified name	
	c) Complex name		d)	None of the ab	ove
8)	A is a g groups.	eneral-purpose m	nech	anism for orgar	nizing elements into
	a) Package		b)	Names	
	c) Owned elemen	ts	d)	None of these	
9)	The public parts of	f a package are ca	alled	its	
	a) Exports	b) Imports	c)	Shared	d) Namespace
10)	Use case diagram	s commonly conta	ain		
	a) Subject		b)	Association rel	ationship
	c) Generalization	relationship	d)	All of above	
11)	A is a goes through durir	a behavior that sp ng its lifetime in re	ecifi spoi	es the sequend nse to events.	e of state an object
	a) State		b)	State Machine	
	c) Interaction		d)	Collaboration	
12)	is a control activity.	n object that own	is a	process or thre	ead and can initiate
	a) Passive object		b)	Class	
	c) Active object		d)	None of the ab	ove
13)	Ais to and provides the	physical and repla e realization of se	acea t of i	ble part of the s nterfaces.	ystem that confirms
	a) Required interfa	ace	b)	Provided interfa	ace
	c) Process		d)	Component	
14)	Which of the follow	ving is correct ?			
	a. Time event is the	ne event that repre	eser	nts the passage	of time
	b. Generally signate	al is asynchronous	seve	ent	
	c. Call event is sy	nchronous event			
	a) only a	b) only b	c)	only c	d) a, b, c

			-3-	SLR-KO – 27
15)	A is s information with e	specification of co expectation that a	mmunication betwee activity will ensure.	en objects that convey
	a) Message		b) State machine	e
	c) Collaboration		d) Transitions	
16)	An among set of obje	is behavior that o ects within a cont	comprises a set of m ext to accomplish a	nessages exchanged purpose.
	a) State	b) Class	c) Object	d) Interaction
17)	Which of the follo	wing is true ?		
	a. A link is semar	ntic connection b	etween objects	
	b. A link is instan	ce of an associa	tion	
	c. Link can not be	e represented wit	th adornments like n	ame, role name etc.
	a) Only a	b) Only b	c) a and b	d) a, b, c
18)	We can specify	flow of o	control represented u	using sick arrowhead.
	a) Procedural	b) Nested	c) Flat	d) Both a and b
19)	A is which it satisfies event.	condition or situ some condition,	uation during the life perform some activ	e of an object during vity, or wait for some
	a) State		b) State Machine	e
	c) Interaction		d) Collaboration	
20)	An action is therefore runs to c	means the completion.	at it cannot be interru	ipted by an event and
	a) Non atomic	b) Atomic	c) Executable	d) Computational
		SEC	ΓΙΟN – I	
2. Wr	ite short notes on (any 4) :		(5×4=20)
1)	Relationship in UI	ML.		
2)	Forward engineer	ring in class diagr	am.	
3)	Forking and joinin			
	r orking and joinin	g.		

5) Abstraction and instances.

SL	R-KO – 27 -4-	
3.	A) Explain building blocks of UML in detail.	10
	 B) What is an interface ? Discuss the ways that element realizes with suitable example. OR 	an Interface 10
	B) Explain common mechanisms in detail.	10
	SECTION - II	
4.	Write a short note on (any 4) :	20
	1) Substates	
	2) Internal structure of component	
	3) Sequence diagram	
	4) Structural collaboration	
	5) Communication in processes.	
5.	A) Explain interaction diagram with example.	10
	B) Explain component diagram with example. OR	10
	B) Explain state chart diagram with example.	10

Total Marks: 100

Seat No.

S.Y.M.C.A. (Under Faculty of Engg.) (Part - II) Examination, 2015 **OPERATING SYSTEM (Old)**

Day and Date : Tuesday, 8-12-2015 Time : 3.00 p.m. to 6.00 p.m.

> Instructions: 1) Figures to the right indicate full marks. 2) Q. No. 3. a) and Q. No. 5. a) are compulsory.

1) Every non-leaf node of the unix file system is ______ of files.

1. MCQ/Objective Type Question Paper:

20

	a) regular	b) device	c) directory	d) none of these
2)	Α	is an instance of a p	program in executio	n.
	a) program	b) process	c) exe file	d) component
3)	When a process e changes from use	executes a system of r mode to	call, the execution n	node of the process
	a) kernel	b) strict	c) address	d) none of these
4)	pr call library.	ograms may invoke	e system calls direc	tly without a system
	a) High level lang	uage	b) Clanguage	
	c) Assembly lang	uage	d) None of these	
5)	The	block occupies the	ne beginning of a file	e system.
	a) Boot	b) Super	c) Inode list	d) Data

- 6) In buffer pool, the kernel maintains a _____ of buffers that preserves the least recently used order.
 - a) used list b) unused list c) free list d) inode list

7) The algorithm for allocation of in-core inode is _____ b) iput c) bmap a) iget d) getblk

- 8) Processes on Unix systems use the _____ descriptor to read input data.
 - a) Standard input b) Standard output c) Standard error
 - d) None of these

SLR-K	D – 28		-2-				
9)	Processes use the _ random access to a	file.	Sy	vste	m call to positio	n th	ne I/O and allow
	a) Iseek	b)	read	c)	write	d)	none of these
10)	The system call		creat	es	special files in th	e s	ystem.
	a) create	b)	mknod	c)	both of these	d)	none of these
11)	is th	e or	nly process no	ot cr	eated through 'f	ork	' system call.
	a) Process 0	b)	Process 1	c)	Process 2	d)	Process 4
12)	Processes on a Unix	k sys	stem terminate	e by	executing		system call.
	a) end	b)	stop	c)	exit	d)	none of these
13)	The	syst	tem call invoke	es a	another program	OV fil	erlaying the
	a) exec	bloc b)	cess with a co start	by C)	oi an execulable	9111 5 1116	e. send
14)	The kernel allows a	D) Droc	occ to change	o) Lite	offoctivo usor I	ע) הור	
14)	system call.	proc	ess to change	5 113		Jus	sing
	a) cuid	b)	setuid	c)	changeuid	d)	none of these
15)	allows t	he s	super user to	set	a global kernel	var	iable to a value
	that give the current	tim	e.				
	a) Time	b)	Times	c)	Stime	d)	Tms
16)	In a page table, the k of a page are legal.	kern	el turns on the		bit to in	dica	ate the contents
	a) Reference	b)	Modify	c)	Age	d)	Valid
17)	The is a longer part of the we	kerr orkir	nel process thang set of a pro	at s ces	waps out memor ss.	ура	ages that are no
	a) Page stealer			b)	Page creator		
	c) Page aging			d)	None of these		
18)	The mer but the permission b	nory pits a	/ fault occurs v associated wit	whe th th	en a process acc ne page did not j	ess oer	ses a valid page mit access.
	a) Valid			b)	Protection		
10)		، مالد		u)			
19)	terminal without any	, the Cor	e line discipline iversions.	e pa	asses data detwo	eer	processes and
	a) Canonical	b)	Raw	c)	Parse	d)	Echo
20)	The syst an existing one.	emo	call creates a r	new	region of shared	lme	emory or returns
	a) shmget	b)	shmat	c)	shmdt	d)	shmctl

	-3-	SLR-KO – 28
	SECTION-I	
2. W	Write short note on (any 4) :	20
a	a) Buffer header.	
b	b) Operating system services.	
C)	c) Algorithm for creating a file.	
ď	d) Process context.	
e	e) Allocating a region.	
3. A	A) Explain process state transition diagram.	10
B	3) Write and explain algorithm for block read ahead.	10
	OR	
B	Explain mounting file systems in detail.	10
	SECTION - II	
4. W	Write short note on (any 4) :	20
a	a) Process scheduling.	
b	b) Demand paging.	
c	c) Page fault.	
d	d) Driver interface.	
e	e) Profiling.	
5. A	A) Explain semaphores. Write algorithm for semaphores operation.	10
B	B) What operations kernel does for the fork ? Write and explain algorithms for fork	thm 10
	OR	10
B	3) Explain in brief Unix system – V IPC any two mechanisms.	10
5. A B	 d) Driver interface. e) Profiling. A) Explain semaphores. Write algorithm for semaphores operation. 3) What operations kernel does for the fork ? Write and explain algorit for fork. OR B) Explain in brief Unix system – V IPC any two mechanisms. 	thm

SLR-KO – 29

Seat No.

S.Y.M.C.A. (Part – II) (Under Faculty of Engg.) Examination, 2015 DATA MINING (Old)

Day and Date : Thursday, 10-12-2015 Time : 3.00 p.m. to 6.00 p.m.

Instructions: 1) Figures to the right indicate full marks.

- 2) Q.3 A and Q. 5 A are compulsory.
- 3) Draw diagram if **necessary**.

1. Choose the correct answer :

- 1) _____ maps data into subsets with associated simple descriptions.
 - a) Classification b) Summarization
 - c) Both a and b d) None of above

2) _____ models a set of inputs, like clustering.

- a) Supervised learning b) Unsupervised learning
- c) Semi-supervised learning d) Reinforcement learning

3) Data mining, alternatively has been called ______ learning.

- a) reinforcement b) deductive
- c) supervised d) ethical
- 4) A ______ rule says that there can be no missing values between the lowest and highest values for the attribute and that all values must also be unique.
 - a) null b) unique
 - c) consecutive d) meta
- 5) _____ use simple domain knowledge to detect errors and make corrections in the data.
 - a) Data auditing tools b) Data domain tools
 - c) Data correction tools d) Data scrubbing tools

20

Max. Marks: 100

-2-

6)	techniques includ	le b	inning regression and clustering.
	a) Aggregation	b)	Generalization
	c) Normalization	d)	Smoothing
7)	The algorithm, al	so o	called the K-medoids algorithm.
	a) PAM	b)	Nearest Neighbor
	c) Squared error	d)	BIRCH
8)	technique that a weight changes backward from	adji the	usts weights in the NN by propagating sink to the source nodes.
	a) Propagation	b)	Back propagation
	c) Feed forward propagation	d)	Feed backward propagation
9)	Outliers can be detected by we	ll-kı	nown tests such as
	a) disorder test	b)	discordancy test
	c) detection test	d)	both a and b
10)	is designed for clu	ste	ring a large amount of metric data.
	a) BIRCH	b)	PAM
	c) NN	d)	DBSCAN
11)	Data mining system should be _		with a database system.
	a) No coupling	b)	Loose coupling
	c) Semi tight coupling	d)	Tight coupling
12)	is a influential a Boolean association rule.	lgo	rithms for mining frequent item sets for
	a) Apriori	b)	Genetic
	c) Grid based	d)	Hierarchical
13)	is the program th	at t	raverses the hypertext structure in the
	web.		• • •
	a) Crawler	b)	Spider
	c) Robot	d)	All of these
14)	database support b	oth	transaction time and valid time.
	a) Transaction time	b)	Snapshot time
	c) Valid time	d)	Bitemporal time

	15)	database usually	/ da	o not accept the same types of updates
		a) Tomporal	ыю ь)	
		a) Temporal	ע) ה	
		c) Time data base	a)	None of these
	16)	tree was designed	ed to	o index multi attribute data.
		a) R	b)	K-D
		c) Quad	d)	None of these
	17)	provides the index	k ar	d query interface in harvest system.
		a) Gatherer	b)	Broker
		c) Crawler	d)	MLDB
	18)	uses a hierarchica	l te	chnique to divide the spatial area into
		rectangular cells similar to qua	d tre	e.
		a) STING	b)	K-D
		c) ID3	d)	CLARANS
	19)	is the percentage	ge d	of transactions in which that items (or
		items) occurs.		
		a) Confidence	b)	Large item set
		c) Frequent item set	d)	Support
	20)	Confidence measure the		of the rule.
		a) Support	b)	Percentage
		c) Strength	d)	All of these
		SEC	TIC	DN – I
2.	Write	short answer on (any 4) :		(4×5=20)

- 1) K-means clustering algorithm.
- 2) Issues in classification.
- 3) Discretization and data reduction.
- 4) Visualization techniques.
- 5) Regression.

-3-

SL	R-KO – 29 -4-	
3.	A) Explain data mining task in detail.	10
	B) Explain Agglomerative algorithm in detail.	10
	OR	
	C) Explain K-Nearest Neighbor algorithm in detail.	10
	SECTION – II	
4.	Write a short notes on (any 4) :	20
	i) Spatial Rules	
	ii) Temporal mining	
	iii) Multimedia mining	
	iv) Association Rules	
	v) Crawlers.	
5.	A) Explain Application of data mining.	10
	B) Explain Web mining in detail.	10
	OR	
	B) Explain spatial data mining with spatial primitive	es. 10

SLR-KO – 30

Seat	
No.	

S.Y.M.C.A. (Part – II) (Under Faculty of Engg.) Examination, 2015 COMPUTER NETWORKS (Old)

Day and Date : Saturday, 12-12-2015 Max. Marks : 10 Time : 3.00 p.m. to 6.00 p.m.					
1.	Ch	oose correct alterna	ative :		20
	1)	Which of the follow	wing device intro	duces maximum de	elay into the network ?
		a) Repeater	b) Router	c) Gateway	d) Bridge
	2)	The set of major geographical arc i	communication s called	links that connects	s servers across wide
		a) Domain		b) Search Engine)
		c) Back Bone		d) Extranet	
	3)	Virtual meeting us	ing computers a	nd cameras is calle	ed
		a) Facsimile		b) Tele-networkir	ng
		c) Video networkir	ng	d) None of these	
	4)	EDI is the abbrevi	ation of		
		a) E-mail Data Inte	erface	b) Electronic Data	a Interchange
		c) Electronic Digital Interface		d) None of the ab	oove
	5)	The ISO-OSI laye	r not involved in	the data encapsula	ation process is
		a) Presentation	b) Network	c) Data Link	d) Session
	6)	Which layer define framing ?	ed by the IEEE h	andles error contro	ol, flow control and
		a) Network	b) MAC	c) LLC	d) Session
	7)	The system used into address is	in the internet for	r transmitting name	es of network nodes
		a) ARP	b) FTP	c) NFS	d) None

SLR-K	D – 30	-2-				
8)	A 6 MHz channel is used by a digi signals what is the transmission ra	tal transmission : te ?	system utilizing 8 levels			
	a) 1.5 M baud/sec	b) 6 M baud/see	0			
	c) 12 M baud/sec	d) 28 M baud/se	ec			
9)	A personal computer attached to a	LAN is referred	to as			
	a) Server b) Gaterway	c) Branch	d) None			
10)	Which of the following is not a hard	lware componen	t of server computer ?			
	a) Network Adapter Card	b) RAM				
	c) Novel Netware	d) Bus				
11)	Earlier computer networks used a single, powerful computer or processing which of the following models does this ?					
	a) Network adapter model	b) Distributed c	omputing			
	c) Client/server	d) Centralised of	computing			
12)	Which of the following network printing component holds a print job in a queue until the printer can process it ?					
	a) Redirector b) Spooler	c) Print server	d) Relocator			
13)	An unconfirmed service has					
	a) Request and indication					
	b) Request, indication, response and confirm					
	c) Request only					
	d) Only indication					
14)	Which of the following shown the best performance?					
	a) Pure ALOHA	b) Slotted ALOF	łA			
	c) 1-persistent CSMA	d) P-persistent	CSMA			
15)	Four bits are used for packet seque protocol. What is the maximum pace	ence numbering i cket sequence ni	n sliding window ımber ?			

a) 4 b) 8 c) 15 d) 16

			-3-		SLR-KO-	- 30	
16) By convention, for broad cast, the host in an IP address has all bits							
	a)	0		b)	1		
	c)	Combination 0's	s and 1's	d)	None of the	e above	
1	7) Ir	o communication	satellite multiple	e rep	peaters are	known as	
	a)	Stations		b)	Detectors		
	c)	Transponders		d)	Modulators	3	
1	8) Ir de	n OSI network ard one by	chitecture, dialo	g co	ntrol and to	ken management is	
	a)	Network layer		b)	Presentation	on layer	
	c)	Transport layer		d)	None		
1	 Communication channel for data transmission used by most people and business organisation are referred to as 						
	a)	Public providers	3	b)	Common o	arriers	
	c)	Common provid	ler	d)	Public carı	iers	
2	20) C	om, edu, gov are	e examples of				
	a)	Protocols	b) Domains	c)	Tags	d) None of these	
			SEC	τιοι	N – I		
2. \	Write	short note on (a	ny 4) :				20
á	a) Dig	gital to digital cor	version				
ł	b) IEI	EE 802.11					
(c) De	esign issues for la	ayers				
(d) Us	ses of Network					
e	e) Ne	etwork Software.					
3. /	Answ	er the following :					
á	a) Ex	plain token pass	ing mechanism	in rir	ng and bus t	topology.	10
ł	b) Ex co	plain 5 advantag nnection oriented	es and 5 disadv d services respe	anta ectiv	ges of conr ely.	ection oriented and	10
		C	DR				

b) Explain guided transmission media with its 2 advantages and 2 disadvantages. 10

-4-

SECTION-II

- 4. Write short note on (any 4) :
 - a) Client-server Paradigm
 - b) User datagram format
 - c) Framing
 - d) Sliding window protocol
 - e) SNMP, MIB and SMI.

5. Answer the following :

a) Explain Hierarchical Routing, Link state Routing, Flooding and Broad casting routing algorithms with neat diagram.
 b) Explain error detection and correction techniques with the help of example.
 OR
 b) Why there is a need of internetworking ? Explain fragmentation and

internetwork routing in detail.

20

SLR-KO – 31

Max. Marks: 100

20

Seat	
No.	

S.Y.M.C.A. (Part – II) (Old) (Under Faculty of Engg.) Examination, 2015 ARTIFICIAL INTELLIGENCE

Day and Date : Tuesday, 15-12-15

Time : 3.00 p.m. to 6.00 p.m.

Instructions: 1) Figure to the right indicate full marks.
2) Q. 3A and Q. 5A are compulsory.
3) Draw diagram if necessary.

- 1. Multiple choice questions :
 - 1) ______ is a program that analyzes organic compounds to determine their structure.
 - a) Dendral b) Axom
 - c) Both a or b d) Neither a nor b
 - 2) The ______ allows for a formal definition of a problem as the need to convert some given situation into some desired situation using a set of permissible operations.
 - a) search space b) state space
 - c) problem space d) none of these
 - 3) A program that can themselves produce formal descriptions from informal ones. This process called
 - a) operation b) operationalization
 - c) optimization d) both a and c

4) ______ in which we follow a single, most likely path until come new piece of information comes in that forces us to give up this path and find another.

- a) Breadth-first b) Depth-first
- c) Either a or b d) Neither a nor b

SLR-KO - 31

-2-

- 5) A partially ______ production system is a production system with the property that if the application of a particular sequence of rules transforms state x into state y, then any permutation of those rules that is allowable also transforms state x into state y.
 - a) commutative b) monotonic
 - c) non-monotonic d) heuristic
- 6) The ______ procedure uses substructure's list so that it can explore only a fairly limited set of structures.
 - a) plan-generate-test b) generate-and-test
 - c) plan-and-test d) backtracking
- 7) ______ is the ability to incorporate into the knowledge structure additional information of the inference mechanisms in the most promising directions.
 - a) Inferential Adequacy b) Inferential Efficiency
 - c) Inherited Adequacy d) Inherited Efficiency
- 8) The most recently created state from which alternative moves are available will be revisited and new state will be created. This form of backtracking is called ______ backtracking.
 - a) chronological b) analytical c) random d) chromological
- 9) To specify one or more states within that space that describe possible situations from which the problem solving process may start. These states are called the ______ state.
 - a) initial b) goal c) formal d) solution
- 10) A separate data structure called a _____ indexes the rules by the differences that they can be used to reduce.
 - a) differential table b) difference table
 - c) index table d) none of these
- 11) _____ measures the extent to which the evidence supports the hypothesis.
 - a) MB b) CF c) MR d) MD
- 12) _____ must exploit the result of morphological analysis to build a structural description of the sentence.
 - a) Semantic analysis b) Syntactic analysis
 - c) Pragmatic analysis d) Relational analysis

- 13) The ______ instance is a binary whose first argument is an object and whose second argument is a class to which the object belongs. a) propositional b) predicate c) logical d) static 14) ______ is a example of weak-slot filler structure. a) Scripts b) Frames c) Conceptual dependency d) All of above 15) A ______ grammar is a context free grammar in which choice of nonterminals and production rules is governed by semantic as well as syntactic function. b) Semantic grammar a) Case grammar c) Both (a) and (b) d) None of these 16) The is obtained by combining all of the literals of the two parent clauses except the ones that cancel. a) resolution b) predicate d) proposition c) resolvent 17) The ______ planning method attacks problems involving conjoined goals by solving the goals one at a time, in order. a) linear b) non-linear c) goal-stack d) conceptual 18) The ______ procedure does not need to treat maximizing and minimizing levels differently since it simply negates evaluations each time it changes levels. a) MINIMAX-A-B b) MINIMAX c) A* d) Iterative Deeping-A* 19) A ______ is a collection of attributes and associated values that describe some entity in the world. a) Frame b) Script c) Concordance d) Singular 20) ______ is a strategy for finding both the structure and the meaning of a sentence in one step. a) Conceptual parsing b) Case grammars
 - c) Both (a) and (b) d) None of these

SLR-KO - 31

-4-

SECTION-I

2.	Write short note on (any 4) :	20				
	1) Generate-and-Test algorithm.					
	2) Depth-first-search algorithm.					
	3) Issues in the design of search programs.					
	4) Techniques for reasoning about values.					
	5) Expert task.					
3.	A) Write and explain AO* algorithm.	10				
	B) Explain multiple techniques for knowledge representation.	10				
	OR					
	B) Write production rules and solution for water jug problem.	10				
	SECTION – II					
4.	Write short note on following (any 4):	20				
	1) Hierarchical planning.					
	2) Conceptual dependency.					
	3) Spell checking.					
	4) Resolution in propositional logic.					
	5) The unification algorithms.					
5.	A) Explain in detail components of a planning system.	10				
	B) Explain in detail rule based system architecture for expert system.	10				
	OR					
	B) Explain in detail slots as full-fledged objects.	10				

SLR-KO-33

Seat	
No.	
	_

S.Y.M.C.A. (Part – II) (Under Faculty of Engg.) Examination, 2015 Elective – I : SOFTWARE TESTING AND QUALITY ASSURANCE (Old)

Day Tim	/ ar ne :	nd Date : Thursda 3.00 p.m. to 6.0	ay, 17-12-2015 0 p.m.		Max. Marks : 100		
1.	Cł	noose correct alt	ernative :		20		
	1)	Software infect	ion is a	verification a	nd validation process.		
		A) Static	B) Dynamic C) Static and dyna	amic D) None		
	2)	What are the types of integration testing?					
		A) Big Bang Te	sting	B) Bottom Up	Testing		
		C) Top Down T	esting	D) All of thes	e		
	 Standards are the established criteria are compared. 			ria to which the sc	ftware		
		A) Process	B) Value	C) Quality	D) Products		
	4)	A non-functional s/w testing done to check if the user interface is easy to use and understand					
		A) Usability tes	sting	 B) Security te 	esting		
		C) Black box testing		D) Unit testing			
	5)	The process that deals with the technical and management issues of software development called as					
		A) Delivery pro	cess	B) Software p	process		
		C) Hardware pr	rocess	D) Testing process			
	6) Testing is a process of executing a p			program with the intent of finding an			
		A) Bugs	B) Defects	C) Errors	D) Anomalies		
 Requirement and Analysis, Design, Development or Coding, te Maintenance is called 			or Coding, testing and				
		A) SDLC	B) Spiral	C) RAD	D) All of these		
	8)	Executing the s as	ame test case by giv	ving the no. of inp	uts on same build called		
		A) Regression		B) AdHoc Te	sting		
		C) ReTesting		D) Unit testin	g		
					P.T.O.		

SLR-KO – 33						
9) \	Which is non-functional software tes	sting	2			
/	A) Unit Testing	B)	Black Box Testing			
C	C) Performance Testing	D)	Regression Testing			
10) /	All of the following might be done du	ring u	nit testing expect			
ľ	A) Desk Check	B)	Manual Support Testing			
C	C) Walk through	D)	None			
11) /	Are we building the right product is k	nown	as			
ļ	A) Validation B) Planning	C)	Verification D) None			
12) \$ a	Static analyzers are software tools t and detect possible	that s	can the source test of a program			
/	 A) Defects and fault 	B)	Fault and anomalies			
C	C) Errors and bugs	D)	None			
13) \	White box testing is not called as					
ŀ	A) Glass Box Testing	B)	Closed Box Testing			
(C) Open Box Testing	D)	Clear Box Testing			
14) I	Boundary value analysis belongs to which testing method?					
ŀ	A) Black Box Testing	B)	White Box Testing			
(C) Grey Box Testing	D)	All of these			
15) ⁻	The probability of failure-free operaten environment for a specified	tion of	a computer program in a specified			
/	A) Time B) Value	C)	Situation D) Both A) and C)			
16) /	Acceptance testing is known as					
/	A) Beta Testing	B)	Grey Box Testing			
C	C) Test Automation	D)	White Box Testing			
17) I	Measures the quality of processes system of management activities ca	s use lled a	d to create a quality product, it is			
/	A) Validation	B)	Quality Assurance			
C	C) Verification	D)	None			
18) \	Which of the following is not white b	ox tes	sting technique ?			
l	A) Branch Testing	B)	Path Testing			
(C) Requirements Testing	D)	Penetration Testing			
			3-		SLR-KO-	-33
----	-----	--	---------------	-------------	-------------------------	-----
	19)	Verification and validation processes of in a software syst	s are tem.	intended to	establish the existence	
		A) Defects B) Errors	C)	Bugs	D) Anomalies	
	20)	Retesting modules connected to the has been made ?	prog	ram or com	ponent after a change	
		A) Full Regression Testing	B)	Unit Regr	ession	
		C) Regional Regression	D)	Retesting		
		SECT	ION -	-		
2.	W	rite short note on (any 4) :				20
	1)	Quality factors				
	2)	Reliability measures				
	3)	Need for SQA				
	4)	Six sigma				
	5)	Automated Static Analysis.				
3.	A)	Explain about verification and validat	tion p	lanning.		10
	B)	Explain building blocks of SQA. OR				10
	B)	Explain Process and product quality	in de	tail.		10
		SECTI	ON –	·		
4.	W	rite short note on (any 4) :				20
	1)	Performance Testing				
	2)	Regression Testing				
	3)	CAST				
	4)	Testers Workbench				
	5)	Dynamic Testing.				
5.	A)	Explain levels of Testing in brief.				10
	B)	Explain Integration Testing.				10
		OR				
	B)	Explain about Black Box Testing.				10

SLR-KO – 35

Total Marks: 100

20

T.Y.M.C.A. (Part – I) (Under Faculty of Engg.) Examination, 2015 MOBILE COMMUNICATIONS (New)

Day and Date : Monday, 7-12-2015 Time : 10.30 a.m. to 1.30 p.m.

Instructions : 1) Figures to the right indicate full marks.
2) Q. 3 A) and Q. 5 A) are compulsory.

- 1. Choose the correct alternative :
 - 1) The sky wave work at frequency
 - a) < 2 MHz b) 2 30 MHz c) 30 40 MHz d) None of these
 - 2) In space division multiplexing the space between interface ranges is called
 - a) Interference b) Guard space c) Space d) All of these
 - 3) _____ layer is responsible in simplified reference model for flow and congestion control.
 - a) Data link layer b) Network layer
 - c) Transport layer d) Physical layer
 - 4) The ______ located in Geneva is responsible for world wide web coordination of telecommunication activities.
 - a) ITU b) CEPT c) DECT d) GSM
 - 5) In ______ range the transmitted power is large enough to differ from background noise.
 - a) Transmission range b) Interference range
 - c) Detection range d) Cell range
 - 6) In ______ system the transmitter changes the frequency several times during the transmission of single bit.
 - a) Slow hopping b) Short term fading
 - c) Dwell hopping d) Fast hopping

SLR-KO – 35			-2-			
7)	The	works fine for	a lig	ht load and does	not	require any
	complicated proc	cess.				
	a) Spread ALOH	IA	b)	Classical ALOH	Α	
	c) Slotted ALOH	IA	d)	Simple ALOHA		
8)	Submarine comr	nunication or AM	rad	io uses		_waves.
	a) Sky	b) Ground	c)	Line of sight	d)	Micro
9)	The intensity of known as	radiation is not sa	ame	in all directions f	ron	n the antenna is
	a) Omni directio	nal effect	b)	Directive effect		
	c) Macroni effect	t	d)	Negative effect		
10)	Receivers are co	omplex in case o	f			
	a) CDMA	b) FDMA	c)	TDMA	d)	SDMA
11)	The idea of spre	ading the spectru	ım ι	ising orthogonal	cod	es is in ?
	a) SDMA	b) FDMA	c)	CDMA	d)	TDMA
12)	Current location	of MN is defined	by			
	a) Care of Addre	ess (CoA)	b)	Foreign Agent (FA)	
	c) Home Netwo	rk (HN)	d)	Home Agent (H	A)	
13)	The	mainly focuse	s on	voice oriented te	ele s	services.
	a) GPRS	b) DECT	c)	FOMA	d)	GSM
14)	Which protocol is	s used for signali	ng b	etween An MSC	an	d A BSC ?
	a) PCM	b) DTMF	c)	SS7	d)	BSSAP
15)	Cellular system whole service ar	require ea.		_procedure as si	ngle	e cell do not cover
	a) Load balancir	ng	b)	Handover		
	c) Call drop		d)	Mobile originate	ed ca	all
16)	Data is transmitt	ed in small portio	ons,	called		
	a) Explores	b) Bursts	c)	Bounces	d)	Destroys

			SLR-KO –	35
17)	Initially DHCP client sends			
	a) DHCPDISCOVER	b)	DHCPREQUEST	
	c) DHCPCLIENT	d)	None	
18)	Packet reservation multiple acces	s is		
	a) Explicit reservation scheme	b)	Integrated reservation scheme	
	c) Implicit reservation scheme	d)	None above	
19)	Roaming is			
	a) Moving between AP	b)	Changing AP	
	c) Scanning for AP	d)	None of the above	
20)	RSS of GSM system includes			
	a) BSC, VLR, HLR	b)	MS, MSC, BTS	
	c) NSS, OSS, BSC	d)	MS, BTS, BSC	
	SEC	TIC	DN — I	
2. Wr	ite short note on any four :		(4×5=	20)
a)	Advance frequency shift keying.			
b)	Simplified reference model for mol	oile	communication.	
c)	Different types of antennas.			
d)	Handover with Inter BSC, Intra MS	SC s	scenario.	
e)	Signal propagation effects.			
3. A)	Give necessity of mobile communic communications.	cati	on. Explain applications of mobile	10
B)	Compare the mechanisms of SDM functions.	A, 1	DMA, FDMA and CDMA with their	10
	OR			
 B) Explain multiple access with collision avoidance TDMA schemes with ne diagram. 			avoidance TDMA schemes with neat	10

SLR-KO	_	35
--------	---	----

-4-

SECTION-II

4.	Write short note on any four :	(4×5=20)
	a) Advantages of WLAN.	
	b) Dynamic source routing in ad hoc networks.	
	c) The three low power states of a Bluetooth device.	
	d) Cellular IP.	
	e) Handover in HiperLAN2.	
5.	A) Explain in brief PICONET.	10
	B) How a mobile node is registered via the FA or directly with the HA?	10
	OR	
	B) What is triangular routing ? How optimized mobile IP solves this proble	em? 10

SLR-KO – 36

Total Marks: 100

20

Seat	
No.	

T.Y.M.C.A. (Part – I) (Under Faculty of Engg.) Examination, 2015 DATA WAREHOUSING AND DATA MINING (New)

Day and Date : Wednesday, 9-12-2015 Time : 10.30 a.m. ot 1.30 p.m.

Instructions : 1) Figures to the right indicate full marks.
2) Q. 3(A) and Q. 5(A) are compulsory.

1. Choose the correct alternative :

1)	is the process of finding a model that describes and distinguishes
	data classes or concepts.

- A) Data characterization B) Data classification
- C) Data discrimination D) Data selection
- 2) The full form of KDD is _____
 - A) Knowledge Database B) Knowledge Discovery Database
 - C) Knowledge Data House D) Knowledge Data Definition

A) Data	B) Information	C) Query	D) Useful information

4) Data warehouse architecture is based on _____

3) The out put of KDD is _____

- A) DBMS B) RDBMS C) Sybase D) SQL server
- 5) Data warehouse contains ______ data that is never found in the operational environment.
 - A) Normalized B) Information C) Summary D) Denormalized
- 6) The data from the operational environment enter ______ of data warehouse.
 - A) Current detail data B) Older detail data
 - C) Lightly summarized data D) Highly summarized data

SLR-K	O – 36	-2-		
7)	The exposes the infor	mation being captured, store	d and managed	
	by operational systems.			
	A) Top-down view	B) Data warehouse view		
	C) Data source view	D) Business query view		
8)	The type of relationship in star schema is			
	A) Many to many	B) One to one		
	C) One to many	D) Many to one		
9)	The allows the select	ction of the relevant informa	ation necessary	
	for the data warehouse.			
	A) Top-down view	B) Data warehouse view		
	C) Data source view	D) Business query view		
10)	Which of the following is not a component of a data warehouse ?			
	A) Metadata	B) Current detail		
	C) Lightly summarized data	D) Component key		
11)	Which of the following is not a kind	d of data warehouse applica	ation ?	
	A) Information processing	B) Analytical processing		
	C) Data mining	D) Transaction processing]	
12)	Which of the following is not a data	a mining functionality ?		
	A) Characterization and discrimina	ation		
	B) Classification and regression			
	C) Selection and interpretation			
	D) Clustering and analysis			
13)	is a summarization	of the general characteristi	cs or features	
	of a target class of data.			
	A) Data characterization	B) Data classification		
	C) Data discrimination	D) Data selection		

14)	4) is a comparison of the general features of the target class			
	objects against the general featur	es of objects from one or multiple		
	contrasting classes.			
	A) Data characterization	B) Data classification		
	C) Data discrimination	D) Data selection		
15)	Strategic value of data mining is _			
	A) Cost-sensitive	B) Work-sensitive		
	C) Time-sensitive	D) Technical-sensitive		
16)	The full form of OLAP is			
	A) Online Analytical Processing	B) Online Advanced Processing		
	C) Online Advanced Preparation	D) Online Analytical Performance		
17)	is a subject-oriented	d, integrated, time-variant, nonvolatile		
	collection or data in support of management decisions.			
	A) Data mining	B) Data warehousing		
	C) Document mining	D) Text mining		
18)	The data is stored, retrieved and updated in			
	A) OLAP	B) OLTP		
	C) SMTP	D) FTP		
19)	An system is marke	et-oriented and is used for data analysis		
	by knowledge workers, including managers, executives, and analysts.			
	A) OLAP	B) OLTP		
	C) Both of the above	D) None of the above		
20)	is a good alternative	e to the star schema.		
	A) Star schema	B) Snowflake schema		
	C) Fact constellation	D) Star-snowflake		

SL	R-KO – 36 -4-	
	SECTION-I	
2.	Write short note on any four :	(4×5=20)
	a) Browser tools	
	b) Parallel processing	
	c) Picklist prompts	
	d) Query tools	
	e) Metadata.	
3.	A) Explain multiple data types in detail.	10
	B) Difference between OLAP and OLTP.	10
	OR	
	B) Explain Datawarehouse Architecture in brief	. 10
	SECTION - II	
4.	Write short note on any four :	(4×5=20)
	a) Outlier	
	b) Agglomerative	
	c) Web Usage Mining	
	d) KDD	
	e) DBMS Versus DM.	
5.	A) What are the issues and challenges in data	mining. 10
	B) Explain Nearest Neighbour Method.	10
	OR	
	B) Explain Data Mining Application in detail.	10

SLR-KO – 37

Seat	
No.	

T.Y. M.C.A. (Part – I) (Under Faculty of Engg.) Examination, 2015 **INFORMATION SECURITY (New)**

Day and Date : Friday, 11-12-2015 Time : 10.30 a.m. to 1.30 p.m.

Instructions: 1) Figures to the *right* indicate *full* marks. 2) Q.3 A) and Q. 5 A) are compulsory.

- 1. Choose correct alternative.
 - 1) C.I.A. triangle has been the industry standard for computer security since the development of
 - a) mainframe b) supercomputer
 - c) desktop pc d) all of the above
 - 2) _____ are software programs that hide their true nature and reveal their designed behaviour only when activated.
 - a) Viruses c) Trojan horses d) All of the above b) Worms
 - 3) A ______ is an identified weakness in a controlled system, where controls are not present or are no longer effective.
 - a) vulnerability b) defect
 - c) both a and b d) none of the above
 - 4) A ______ is a program or device that can monitor data traveling over a network.
 - a) social engineering b) sniffers
 - c) phishing d) none of the above
 - 5) _____ Act regulates government agencies and holds them accountable if they release private information about individuals or businesses without permission.
 - a) Federal Privacy b) Economic Espionage
 - c) Digital Millennium Copyright d) None of the above

Total Marks: 100

SLR-K	0 – 37 -2-			
 Once the organizational assets have been identified, a threat a process the risks facing each asset. 			threat assessment	
	a) identifies	b)	quantifies	
	c) both a and b	d)	none of the ab	ove
 All information that has been approved by management for classified as 			nt for public release	
	a) confidential	b)	internal	
	c) external	d)	all of the above	e
8)	information of the utmost of which could severely impact the w	sec /ell-	recy to the orga being of the org	nization, disclosure anization.
	a) Public	b)	Classified	
	c) Sensitive	d)	None of the ab	ove
9)	Internet protocol is vulnerable to der	nial	of service is	
	a) Sabotage	b)	Software attac	ks
	c) Both a and b	d)	None of the ab	ove
10) Management must define type of securit National Institute of standards.		e of security poli	icy, according to the	
	a) EISP b) ISSP	c)	SysSP	d) All of the above
11)	IT Amendment Bill, 2008 which was p	ass	ed in	in December, 2008.
	a) Lok Sabha	b)	Rajya Sabha	
	c) Both a and b	d)	None of the ab	ove
12)	Cyber crimes are unlawful acts where the computer is used as a			
	a) tool	b)	target	
	c) both a and b	d)	none of the ab	ove
13) provide legal recognition to electron		electronic reco	rds.	
	a) Digital signature	b)	Electronic sign	ature
	c) Both a and b	d)	None of the ab	ove
14) The ownership of a digital signature key is bound to a specific use a valid signature shows that the message was sent by that user i		becific user and thus that user is		
	a) Authentication	b)	Integrity	
	c) Non Repudiation	d)	All of the abov	е

		-3- SLR-KO – 37				
15)	15) Violation of cyber laws rules of conduct lead to Govt. action as					
	a) imprisonment	b) fine				
	c) both a or b	d) both a and b				
16)	 The Certifying Authorities (CAs) issue digital signature certificates for electronic authentication to users. 					
	a) peoples	b) users				
	c) authority	d) none of the above				
17)	The may, by notificatio	n in the Official Gazette, appoint a CCA.				
	a) Central Government	b) State Government				
	c) Both a and b	d) None of the above				
18)	The Controller shall make use of _ and misuse.	that are secure from intrusion				
	a) hardware b) software	c) procedures d) all of the above				
19)	The applicant holds the signature.	, which is capable of creating a digital				
	a) private key	b) public key				
	c) both a and b	d) none of the above				
20)	Every resource on the web has an	address called				
	a) UML	b) URL				
	c) WWW	d) None of the above				
	SECTION-I					
2. Wri	te short note on any four questions	. (4×5=20)				
a)	a) Critical characteristics of Information.					
b)	Define and List categories of threa	ts.				
c)	DOS and DDOS.					
d)	d) Information Asset Valuation.					

e) Discretionary access controls : Authentication.

SL	R-KO – 37 -4-	
3.	A) Explain different ethical issues in detail.	10
	 B) Describe major stages of risk assessment. OR 	10
	B) Describe in brief application gateways and MAC layer firewall	s. 10
	SECTION - II	
4.	Write short note on any four questions.	(4×5=20)
	a) Jurisprudence of Indian Cyber Law.	
	b) Legal Recognition of Electronic Records.	
	c) Appointment of controller of certifying authority.	
	d) Cyber Squatting.	
	e) Cyber Regulations of Appellate Tribunal.	
5.	A) Explain in detail power of controller.	10
	B) What is digital signature ? Explain different digital signature for OR	atures. 10
	B) Explain different powers of adjudication officers.	10

SLR-KO – 38

Seat	
No.	

T.Y. M.C.A. (Part – I) (Under Faculty of Engg.) Examination, 2015 ADVANCED INTERNET TECHNOLOGY (New)

Day and Date : Monday, 14-12-2015 Time : 10.30 a.m. to 1.30 p.m. Max. Marks: 100

Instructions: 1) Figures to the right indicate full marks.
2) Q. 3 A) and Q. 5 A) are compulsory.

- 1. Choose the correct alternative :
 - 1) To join the internet the computer has to be connected to a
 - a) internet architecture board b) internet society
 - c) internet service provider d) none of the mentioned
 - 2) Which one of the following protocol is not used in internet?
 - a) HTTP b) DHCP
 - c) DNS d) None of the mentioned
 - 3) What type of commerce occurs when a business sell its products over the internet to other businesses ?
 - a) B2B b) B2C
 - c) C2B d) Enterprise commerce
 - 4) Variables always start with a _____ in PHP.
 - a) Pond sign b) Yen sign c) Dollar sign d) Euro sign
 - 5) PHP is an open source software
 - a) True b) False
 - c) Depends on website d) None of these

SLR-K	KO – 38	-2-			
6)	Which of the follow block ?	ving tags is not a va	alid way to begin an	d end a PHP code	
	a) <% %>	b) ?	c) = ?	d) !	
7)	In PHP Language	variables are case s	sensitive		
	a) True		b) False		
	c) Depends on we	bsite	d) Depends on ser	rver	
8)	Which of the follow	ving statements prir	nts in PHP ?		
	a) Out	b) Write	c) Echo	d) Display	
9)	Software which all	ows user to view th	ne webpage is called	das	
	a) Website		b) Interpreter		
	c) Internet Browse	er	d) Operating syste	em	
10)	(connects web pages	6.		
	a) Connector	b) Link	c) Hyperlink	d) None of the above	
11)	Which of the following is not a type of personal computer ?				
	a) mainframe	b) desktop	c) notebook	d) netbook	
12)	Every Web page has a unique address called a(n)				
	a) URL	b) ARL	c) RUL	d) LUR	
13)	A Web	is a series of Web	pages on a specific	topic.	
	a) site	b) home	c) group	d) URL	
14)	Which of the follow	ving is Not an OUTF	PUT device ?		
	a) Mouse	b) Printer	c) Projector	d) Speaker	
15)	Which of the followi	ng is the largest com	nmunity in classification	on of e-commerce ?	
	a) Business to Business (B to B)				
	b) Business to Consumer (B to C)				
	c) Business to Go	vernment (B to G)			
	d) Government to	Government (G to	G)		

			-3-	SLR	-KO – 38
16)	Which of the follow e-commerce ?	mple of Business t	o Consumer (E	B to C)	
	a) Amazon.com	b) e-bay.com	c) dell.com	d) lastminut	e.com
17)	What is the limit o used?	f data to be passe	ed from HTML whe	n doGet() met	hod is
	a) 4 K	b) 8 K	c) 2 K	d) 1 K	
18)	The life cycle of a	servlet is manage	d by		
	a) servlet context		b) http or https		
	c) servlet contain	er	d) all of the abov	/e	
19)	Which of the below	v symbols is a nev	vline character ?		
	a) \r	b) \n	c) /n	d) /r	
20)	Who is the father of	of PHP ?			
	a) Rasmus Lerdo	rf	b) William Make	piece	
	c) Drek Kolkevi		d) List Barely		
		SECT	ION – I		
2. W	rite short note on a	n y four :			(4×5=20)
a)	Uniform Resource	Locator			
b)	History of Internet				
c)	Cookies				
d)	HTTP Request				
e)	HTTP Response				
3. A)	Explain C2B E-Co	mmerce with its ac	dvantages and disa	dvantages.	10
B)	What is the differe	nce between GET	and POST method	in Servlet?	10
	OR				
B)	What are the vario	ous applications of	E-commerce?		10

SLR-KO - 38

-4-

SECTION-II

4.	Write short note on any four :	(4×5=20)
	a) PHP Constant	
	b) Session	
	c) Include Statement	
	d) PHP and UTTP Environment	
	e) Error Handling in JSP.	
5.	A) Explain Datatypes in PHP with an example.	10
	B) Explain flow control and loop structure in PHP with example	10
	OR	
	B) Explain directives in JSP with example.	10

_

SLR-KO – 39

Total Marks: 100

20

Seat	
No.	

T.Y.M.C.A. (Part – I) (Under Faculty of Engg.) Examination, 2015 ARTIFICIAL TECHNOLOGY (Elective – II) (New)

Day and Date : Wednesday, 16-12-2015 Time : 10.30 a.m. to 1.30 p.m.

> Instructions: 1) Figures to the right indicate full marks. 2) Q. 3 A) and Q. 5 A) are compulsory.

1. Choose the correct alternative :

- 1) What is the term used for describing the judgemental or commonsense part of problem solving ?
 - a) Heuristic b) Critical c) Value Based d) Analytical
- 2) What stage of the manufacturing process has been described as "The mapping of function onto form" ?
 - a) Design b) Distribution
 - c) Project Management d) Field service
- 3) What kind of planning consists of successive representations of different levels of a plan ?
 - a) Hierarchical planning b) Non-hierarchical planning
 - c) Project planning d) All of the above
- 4) Decision support programs are designed to help managers make
 - a) Budget projections b) Visual presentations
 - c) Business decisions d) Vacation schedules
- 5) Programming a robot by physically moving it through the trajectory you want it to follow is called
 - a) Contact sensing control b) Continuous-path control
 - c) Robot vision control d) Pick-and-place control

SLR-KO – 39 -2-6) High-resolution, bit-mapped displays are useful for displaying b) Graphics a) Clearer characters d) All of the above c) More characters 7) A bidirectional feedback loop links computer modelling with a) Artificial science b) Heuristic processing c) Cognitive science d) Human intelligence 8) A process that is repeated, evaluated and refined is called a) Iterative b) Descriptive c) Interpretive d) Diagnostic 9) An AI technique that allows computers to understand associations and relationships between objects and events is called a) Heuristic processing b) Cognitive science c) Relative symbolism d) Pattern matching The field that investigates the mechanics of human intelligence is b) Cognitive science a) History c) Psychology d) Sociology A problem is first connected to its proposed solution during the ______ stage. a) Conceptualization b) Identification c) Formalization d) Implementation 12) What is the name of the computer program that simulates the thought processes of human beings? a) Human logic b) Expert reason c) Expert system d) Personal information 13) A computer program that contains expertise in a particular domain is called an a) Intelligent planner b) Automatic processor c) Operational symbolizer d) Expert system 14) Ambiguity may be caused by a) Syntactic ambiguity b) Multiple word meanings c) Unclear antecedents d) All of the above

	-3-	SLR-KO – 39			
15) Natural language processing is c	divided into the two subfields o	f			
a) Symbolic and numeric	b) Understanding and g	eneration			
c) Algorithmic and heuristic	d) Time and motion				
16) To invoke the LISP system, you	must enter				
a) Al	b) LISP				
c) CL (Common Lisp)	d) None of the above				
17) Prior to the invention of time shar access was	ring, the prevalent method of c	computer			
a) Batch processing	b) Telecommunication				
c) Remote access	d) All of the above				
18) In a rule-based system, procedu	ıral domain knowledge is in the	e form of			
a) Production rules	b) Rule interpreters				
c) Meta-rules	d) Control rules				
19) A natural language generation pr	rogram must decide				
a) What to say	b) When to say someth	ing			
c) Why it is being used	d) Both a) and b)				
20) Who is considered to be the "Fat	ther" of artificial intelligence ?				
a) Fisher Ada	b) John McCarthy				
c) Allen Newell	d) Alan Turning				
SECTION – I					
2. Write short note on any four :		(4×5=20)			
a) Al Technique					
b) Production System					
c) Constrain Satisfaction					
d) Frame Problem					

e) Mean End Analysis.

SLI	R-KO – 39 -4-	
3.	A) Explain the approaches to knowledge representation in d	etail. 10
	B) Explain Issues in Knowledge Representation.	10
	OR	
	B) What is hill climbing ? Write and explain simple hill climb	ing algorithm. 10
	SECTION - II	
4.	Write short note on any four :	(4×5=20)
	a) Script	
	b) Computable function and predicates	
	c) Goal Stack Planning	
	d) Game Playing	
	e) Alpha Beta Cutoff.	
5.	A) Explain in detail resolution in predicate logic.	10
	B) Explain in detail secondary search.	10
	OR	
	B) Explain in detail truth maintenance system.	10

Seat No.

T.Y.M.C.A. (Part – I) (Under Faculty of Engg.) (New) Examination, 2015 **INFORMATION RETRIEVAL SYSTEM (Elective – II)**

Day and Date : Wednesday, 16-12-2015 Time : 10.30 a.m. to 1.30 p.m.

- 1. MCQ:
 - 1) An information retrieval model is a
 - a) Quadruple
 - c) Both a) and b) d) None of the above
 - 2) Each document is described by a set of representative keywords called
 - a) Index terms
 - c) Secondary term
 - 3) Boolean model is a simple model based on
 - a) Set theory
 - c) Both a) and b)
 - 4) Queries are specified as
 - a) Boolean expression
 - c) Both a) and b)
 - 5) Boolean model is based on binary
 - a) Decision criterion
 - c) Both a) and b)

b) Queries

- 6) Weights are ultimately used to compute the
 - a) Degree of similarity
 - c) Set theory d) None of the above
- 7) For ______ weights are assigned to index terms in queries and documents.
 - a) Non binary
 - c) Hexadecimal

d) None of the above

b) Hypertext

b) Binary

- is a high level interactive navigational structure. 8) A_
 - a) Link
 - c) Model
- 9) HTML stands for
 - a) Hyper Text Markup Language
 - c) High Text Markup Language
- b) Hyper Text Main Language
- d) None of the above

d) None of the above

- P.T.O.

SLR-KO – 40

b) Primary term

d) None of the above

d) None of the above

- b) Flowchart
- d) None of the above
- b) Queries
- d) None of the above

b) Boolean algebra

b) Triple

Total Marks: 100

SLR-KO	D-40	-2-	
10)	Ais the	formulation of a us	er information need.
	c) Program	d)	None of the above
11)	has a sv	vntax composed of	atoms
,	a) Boolean guerv	b)	Text
	c) Program	d)	None of the above
12)	A is a se	t of syntactic feature	es that must occur in a text segment.
,	a) Expression	b)	Program
	c) Pattern	d)	None of the above
13)	is inform	nation on the organ	ization of data.
	a) Meta base	b)	Data base
	c) Flow char	d)	None of the above
14)	 SGML stands for a) Standard General N b) Standard Generaliz c) Both a) and b) d) None of the above 	/larkup Language ed Markup Langua	ıge
15)	Multimedia includes		
	a) Audio	b)	Video
	c) Images	d)	All of the above
16)	GIF stands for		
	a) Graphic Interchang	je Format b)	Graphical Interchange Format
	c) Both a) and b)	d)	None of the above
17)	Inverted file structure	in composed of	
	a) Vocabulary	b)	Occurrences
	c) Both a) and b)	d)	None of the above
18)	Shift Or is based on		B ¹
	a) Bit concurrency	b)	Bit parallelism
		u)	None of the above
19)	Most search engine us	se a centralized	Controlindorou
	a) Grawler Indexer	(d b)	Ventral Indexer
0 0)		u)	None of the above
20)	ivieta searchers are	L \	Information
	a) Web servers	(D م)	None of the above
		u)	

- b) Information
 - d) None of the above

SECTION-I

2.	Write short note on (any 4):	(4×5=20)
	1) Natural language	
	2) A formal characterization of IR Models	
	3) Structural queries	
	4) Metadata	
	5) Classic Information Retrieval.	
3.	Answer the following :	
	1) Explain keyword based querying in detail.	10
	2) Explain inverted files and indices for text search in detail.	10
	OR	
	2) What is Multimedia ? Explain formats and textual images in detail.	10
	SECTION - II	
4.	Write short note on (any 4):	(4×5=20)
	1) Data modeling.	
	2) Conditioning on multimedia data.	
	3) Document models.	
	4) Searching using hyper links.	
	5) One dimensional time series.	
5.	Answer the following :	
	1) Explain generic multimedia indexing approaches in detail.	10
	2) Explain search engines, browsing, meta searchers in detail.	10
	OR	
	2) Explain architectural issues of digital libraries in detail.	10

SLR-KO – 41

Seat No.

T.Y. M.C.A. (Part – I) (Under Faculty of Engg.) Examination, 2015 Elective – II FUZZY LOGIC AND ARTIFICIAL NEURAL NETWORK (New)

Day and Date : Wednesday, 16-12-2015 Time: 10.30 a.m. to 1.30 p.m.

> Instructions: 1) Figures to the right indicate full marks. 2) Q. 3 A) and Q. 5 A) are compulsory.

MCQ/Objective Type Questions

Duration : 30 Minutes

- 1. Choose the correct alternative :
 - weights are adjusted in probabilistic fashion. 1) In _
 - a) Gradient descent learning
 - c) Competitive learning
- b) Stochastic learning d) Hebbian learning

d) all the above

- function is also known as quantizer function. 2)
 - a) signal function b) signum function
 - c) sigmoidal function
- of parameters of membership functions is widely used and 3) practised in fuzzy modelling and applications. b) priority selection
 - a) probabilistic selection
 - c) cluster selection

c) heaviside function

- 4) ART is
 - a) Adaptive Resonance Theory
 - c) Adaptive Right Theory
- b) Adaptive Resistance Theory
- d) None
- 5) A very commonly used activation function is the a) step function
 - b) interference function
 - d) thresholding function

d) heuristic selection

- 6) A fuzzy set A in X is characterized by a membership function d) All of these a) F(x)b) A(x)c) μ A(x)
- 7) The hidden layer neurons are linked to the output layer neurons and corresponding weights are referred as
 - a) hidden output layer weights b) hidden input layer weights
 - c) layer weights d) weights
- 8) In Hebbian learning the input output pattern pairs are associated by the weightmatrix W known as
 - a) relation matrix b) identity matrix
 - c) correlation matrix d) square matrix

P.T.O.

 $(20 \times 1 = 20)$

Marks: 20

Max. Marks: 100

SLR-K	0-41	-2-				
9)	A type of logic that a) Fuzzy logic	recognizes more to b) Crisp set	thaı c)	n simple true an Boolean logic	d fa d)	lse values is None of these
10)	A crossover point of a) $\mu A(x) = 1$	of a fuzzy set A is b) $\mu A(x) = 0$	a p c)	oint x ∈ X at wh μ A(x) = α	ich d)	μ A(x) = e
11)	The link contains a neu a) synaptic junctio	which is a very ro transmitter fluid n	[,] mii I. b)	nute gap at the oneuron	end	of the dendritic
12)	c) spike A brain contains at	oout	d)	none of these units called ne	euro	INS.
	a) 10 ⁹	b) 10 ¹⁰	C)	10	d)	10 ⁵
13)	is the given input space t	e process of formu o an output space	ılatiı	ng a non-linear r	nap	ping from a
	a) Fuzzification	b) Interence	C)	Plant	d)	All the above
14)	a) fuzzificationc) expert knowledge	characterized by a	ι se b) d)	t of linguistic sta system knowle defuzzification	dge	ients based on
15)	i	s a mapping from a	, a sp	ace of fuzzy cor	ntrol	actions defined
	over an output univ actions.	erse of discourse i	into	a space of non-	fuzz	zy (crisp) control
	a) defuzzification	b) fuzzification	C)	calculation	d)	none
16)	optimization proceed	ersnip functions na Jure b) False	ave	iour parameters	anc	I can burden the
17)	The output of a	is l	imit	ed to only – 1 ar	nd +	1 depending on
.,	the value of the inp a) linear function	ut signal. b) step function	c)	ramp function	d)	none
18)	In a a) Backward netwo	, only forward co ork twork	nne b) d)	ctivity of the neu Integrated network	uron /ork	s is considered.
19)	c) recultivaturie	networks consist	of r	ecentive field un	ite (hidden units)
10)	a) Multilayer perce c) Belief	ptron	b) d)	Stochastic Radial Basis Fi	unct	ion (RBF)
20)	The	_ is a two-layer fee	dfor	ward neural netw	vork	for classification
	of binary bipolar n denoted as DH	-tuple input vecto	ors เ	using minimum	har	nming distance
	a) Hamming Netw c) GRNN	ork (HN)	b) d)	Belief Network Probabilistic Ne	eura	al Networks

	-3-	SLR-KO – 41
	SECTION-I	
2.	Write short note on any four :	(4×5=20)
	a) Fuzzy membership functions.	
	b) Operations on fuzzy sets.	
	c) Defuzzification.	
	d) Parameter identification for fuzzy modelling.	
	e) Control fault diagnosis.	
3.	A) Explain fuzzy if-then rules.	10
	B) Give neural network applications process identification.	10
	OR	
	B) Explain development of rule base and decision making system.	10
	SECTION - II	
4.	Write short note on any four :	(4×5=20)
	a) Human and Computers.	
	b) Characteristics of ANN.	
	c) Learning rules.	
	d) Unsupervised learning.	
	e) BAM training algorithm.	
5.	A) Explain storage and recall algorithm.	10
	B) Explain paradigm of associative memory. Explain bidirectional as memory architecture.	sociative 10
	OR	
	B) Explain back propagation algorithm.	10

SLR-KO – 42

Seat No.	
-------------	--

T.Y.M.C.A. (Part – I) (Under Faculty of Engg.) Examination, 2015 Elective – II : CLOUD COMPUTING (New)

Day and Date : Wednesday, 16-12-2015 Time : 10.30 a.m. to 1.30 p.m. Total Marks : 100

Instructions: 1) Figures to the right indicate full marks. 2) Q. 3A and 5A are compulsory.

1. Choose the correct alternative.

- 1) _____ computing is making our business application mobile and collaborative. a) Traditional b) Cloud c) Virtualization d) None of these 2) The Cloud is mixture of public and private cloud. a) Private b) Hybrid c) Public d) Community 3) The _____ Cloud is operated only within a single organization. a) Community b) Hybrid c) Public d) Private 4) _____ provides access to fundamental resources such as physical machines, virtual machines, virtual storage, etc. a) SaaS b) PaaS c) DaaS d) laaS 5) ______ is the ability to run multiple operating systems on a single physical system and share the underlying hardware resources. a) Server b) Multithread c) Virtualization d) Deployment 6) _____ provide virtualized IT-infrastructures on demand. a) Virtual networks b) Virtual machines c) Virtual memory d) None of these 7) The ______ of a data center network provides connectivity for server resource pool residing in the data center. a) Core layer b) Aggregation layer
 - c) Access layer d) All of these

SLR-K	0 – 42		-2-	
8)		cloud may be less	s secure because	e of its openness.
	a) Hybrid	b) Private	c) Community	v d) Public
9)		provider are inclu	ded in lower adm	inistrative overhead and
	lower total cos	t of ownership.		
	a) laaS	b) SaaS	c) PaaS	d) All of these
10)		allows the consu	mer to access co	mputing resources through
	administrative	access to virtual	machines.	
	a) SaaS	b) DaaS	c) PaaS	d) laaS
11)		security refers to	securing the com	puter facility, its equipment
	and software.			
	a) Logical	b) Physical	c) Behavioral	d) None of these
12)	Cloud computi	ng security must l	be done on	levels.
	a) Four	b) Three	c) Five	d) Two
13)		service verifies ge	enuineness of co	mmunicating entities that
	they claim to b	юe.		
	a) Authenticat	ion	b) Authorization	on
	c) Encryption		d) Decryption	
14)	Data	protects dat	a from unauthoriz	zed disclosure.
	a) Integrity		b) Confidentia	ality
	c) Authenticat	ion	d) All of these	
15)	Security	is more t	han a particular a	algorithm or protocol.
	a) Services		b) Model	
	c) Mechanism	าร	d) None of the	ese
16)	The	application m	anagement platfo	orm also improves overall
	performance b	by using different	resources or infra	astructure.
	a) Heterogene	eous cloud	b) Public clou	d

d) Hybrid cloud c) Multi-cloud

-3-

17)	A application management platform is a cloud strategy that manages the use of multiple public, private or hybrid cloud platforms.						
	a) Public cloud	l	b) Heterogeneo	us cloud			
	c) Hybrid cloud	k	d) Multi-cloud				
18)	is the need to pro	s a core issue in n tect identity infor	nany challenges in c mation and transac	iny challenges in cloud computing including ation and transaction histories.			
	a) Policy	b) Privacy	c) Integrity	d) All of these			
19)	through a web t	commonly refers prowser.	s to applications d	elivered to the end user			
	a) laaS	b) DaaS	c) SaaS	d) PaaS			
20)	In classical classical and authentical	loud environment ion information.	s, providers must se	egregate customer identity			
	a) Public	b) Hybrid	c) Traditional	d) Multi-tenant			
		SE	ECTION – I				
2. Wr	ite short note or	any four :		(4×5=2	0)		
a)	What is cloud o	omputing? Wha	t are its benefits ?				
b)	b) Explain public cloud with its benefits.						
c)	Explain the cor	cept of virtualiza	tion along with its b	penefits.			
d)	Explain the con	nmon challenges	to private cloud im	plementations.			
e)	Explain all the p	oublic cloud prov	iders.				
f)	Explain Platform	m as a Service (F	PaaS) offerings.				

- 3. A) Explain all the deployment models of cloud computing. 10
 - B) Explain all the private cloud vendors in detail.

OR

B) Explain all the laaS vendors in detail.

10

SLR-KO – 42

-4-

SECTION-II

4.	Write short note on any four :	(4×5=20)
	a) Explain the security concerns in traditional IT.	
	b) Explain malicious insiders in cloud computing.	
	c) Explain the concept of multi-cloud management.	
	d) Explain the challenges in managing heterogenous clouds.	
	e) Explain cloud applications in detail.	
	f) Explain cloud security.	
5.	A) Explain security issues or challenges faced by cloud computing in term of application security.	າຣ 10
	B) Explain benefits and advantages of multi-cloud management systems.	10
	OR	
	B) Explain future technology trends in cloud computing with a focus on clo service models.	oud 10

SLR-KO – 43

Total Marks: 100

Seat	
No.	

T.Y.M.C.A. (Part – I) (Under Faculty of Engg.) Examination, 2015 Elective – II : LINUX OPERATING SYSTEM (New)

Day and Date : Wednesday, 16-12-2015 Time : 10.30 a.m. to 1.30 p.m.

Instructions: 1) Figures to the right indicate marks.

- 2) Q. **3 A** and Q. **5 A** are **compulsory**.
 - 3) Write a program *if necessary*.

1. Multiple choice questions :

- 1) Linux is ______ kernel that is the Linux kernel executes in a single address space entirely in kernel mode.
 - a) monolithic b) micro
 - c) mini d) all of the above
- 2) The kernel is sometimes referred as the _____ of the operating system.
 - a) supervisor b) core
 - c) both a) and b) d) none of the above
- 3) The kernel stores a list of processes in a linked list called the task list.
 - a) doubly b) circular singly
 - c) circular doubly d) none of the above
- 4) The ______ of the process descriptor describes the current condition of the process.
 - a) process context b) state field
 - c) both a) and b) d) none of the above
- 5) The difference between kernel threads and normal processes is that the kernel threads ______ an address space.
 - a) do not have b) do have
 - c) partially d) none of the above

6) Linux and most modern operating systems provides _____ multitasking.

- a) preemptive b) cooperative
- c) both a) and b) d) none of the above

SLR-KO	D – 43 -2	<u>2</u> -	
7)	Each runqueue contains	_pric	ority arrays.
	a) one	b)	two
	c) three	d)	none of the above
8)	System calls provide layer between		processes.
	a) hardware and user-space	b)	hardware and OS space
	c) both a) and b)	d)	none of the above
9)	System calls are simple to implement	nt and	to use.
	a) easy	b)	difficult
	c) moderate	d)	none of the above
10)	The function the kernel run in respo	nse to	o a specific interrupt is called
	a) interrupt handle	b)	interrupt service routine
	c) both a) and b)	d)	none of the above
11)	Code paths that access the manipul	ate sl	nared data are called
	a) critical region	b)	process region
	c) both a) and b)	d)	none of the above
12)	An interrupt can occur at executing process.	almo	st any time, interrupting the currently
	a) serially	b)	synchronously
	c) asynchronously	d)	none of the above
13)	If thread of execution attempts to ac for the lock to be released is	quire	a lock it already hold, it has to wait
	a) deadlock	b)	self-deadlock
	c) others deadlock	d)	none of these
14)	Atomic operations provide instructio	ns th	at execute automatically means
	a) with	b)	without
	c) rare	d)	all of these
15)	A spin lock is a lock that can be held	l by _	thread of execution.
	a) at most one	b)	only one
	c) more than one	d)	none of these

		-3-				SLR-KO-43
	16)	readers can concurrently	/ hold t	the reader	lock.	
		a) only one	b) mo	ore		
		c) one or more	d) no	one of thes	е	
	17)	Semaphores can allow for	_of sii	multaneou	s lock holde	ers.
		a) two	b) lin	nited numb	er	
		c) arbitrary number	d) no	one of thes	e	
	18)	The system timer goes off at programmer	med fr	equency c	alled the	
		a) tick rate	b) clo	ock rate		
		c) both a) and b)	d) no	one of thes	e	
	19)	Linux partitions the systems pages into to satisfy allocation as needed.)	h	ave a poolir	ng in place
		a) blocks	b) zo	ones		
		c) regions	d) no	one of thes	e	
	20)	per-CPU data is stored in				
		a) an array	b) lis	st		
		c) queue	d) na	one of these	e	
		SECTIO)N – I			
2.	Wr	ite short note on (any four) :				(4×5=20)
	a)	Linux Kernel development community				
	b)	The Linux scheduler algorithm				
	c)	Preemption and context switching				
	d)	System call context				
	e)	Writing an interrupt handler.				
3.	A)	Describe different schedule related sys	stem c	calls.		10
	B)	Draw and explain the kernel source tre	ee. Wh	nat is a bea	ast of a diffe	rent
		nature ?				10
		OR				
	B)	Write and explain the Linux scheduler a	algorit	hm.		10

SLR-KO-43

-4-

SECTION - II

4.	Write short note on (any four):	(4×5=20)
	a) Semaphores	
	b) Hardware clocks and timers	
	c) High memory mappings	
	d) The dentry object and the file object	
	e) Anatomy of block device.	
5.	 A) Explain common file system interface, files system VFS objects and data abstraction. 	ata 10
	B) What do you mean by buffer, buffer heads, the bio structure and reque queues ?	est 10
	OR	
	B) Describe per-CPU allocation and the new per-CPU interface in detail.	10

SLR- KO – 44

Seat	
No.	

T.Y.M.C.A. (Under Faculty of Engg.) (Part – I) Examination, 2015 MOBILE COMMUNICATIONS (Old)

Day ar Time :	nd Date : Monda 10.30 a.m. to 1.	y, 7-12-2015 .30 p.m.					Max. Marks :	100		
1. M	1. MCQ/Objectives Type Question Paper 20									
1)	offers transmission of messages of up to 160 characters.									
	a) SMS	b) Email	c)	MMS	d)	Bluet	ooth			
2)	Changing VRL called	's with uninterrupte	ed ava	ailability of	all ser	vices i	s also			
	a) Roaming	b) Bluetooth	c)	Handover d)		All of these				
3)	In space division multiplexing the space between interface ranges is called									
	a) Interface	b) Space	c)	Guard sp	ace	d)	All of these			
4)	Signals are the representation of data.									
	a) Logical	b) Physical	c)	Technical d)		None of these				
5)	5) radio waves will be deflected at an edge and propagate directions.									
	a) Reflection	b) Refraction	c)	Scatterin	g	d)	Diffraction			
6) Spread spectrum techniques involve spreading the bandwidth needed to transmit										
	a) Signals	b) Waves	c)	Data	d)	All of	these			
SLR-K	(O – 44		-2-							
-------	------------------	----------------------	--------	------	-----------	---------	-----------------------			
7)	In th	e transmitter uses	on fre	que	ncy fo	r sever	al bit periods.			
	a) CDMA			b)	Fast	Hopping	g			
	c) Cellular Sys	tem		d)	Slow	Hoppin	g			
8)	The First Tele-t	eaching started in _								
	a) 1933	b) 1982	c)	193	32	d)	1967			
9)	Waves in the	freque	encv r	ana	e are u	ised bv	submarines.			
- /	a) Low	b) High	c)	Ve	ry low	d)	Middle level			
10)	ma	arked the beginning	g of n	nobi	le con	nmunic	ation satellites with			
	Iridium system.									
	a) 1971	b) 1998	c)	199	91	d)	1999			
11)	MANET									
	a) Mobile Ad-h	oc Networking		b)	Mobil	e Netw	ork			
	c) Mobile Appl	ication Networking		d)	All of	these				
12)		technology uses d	iffuse	ligh	nt reflee	cted at	walls.			
	a) Bluetooth	b) Infra red	c)	Ad	-hoc	d)	All of these			
13)	WLAN can use	to ma	ike up	net	work.					
	a) Access poir	nt		b)	Ether	net car	d			
	c) Bluetooth			d)	None	of thes	se .			
14)	Infra red and ra	dio transmission ar	е							
	a) WLAN	b) Networks	c)	Blu	etooth	d)	All of these			
15)	WAP									
	a) Wireless Ap	plication Protocol								
	b) Wireless Ac	cess Protocol								
	c) Wired Applie	cation Product								
	d) Wired Acces	ss Product								

	16)	 Standard TCP is used between the fixed a) Foreign Agent c) Router 				d co b) d)	mpute Acce Mobi	r and t ss Poi le Hos	he nt t	
	17)	On	e advice in t	the piconet can a	act as					
		a)	Slave	b) Master	c)	Pa	rked	d)	Standby	
	18)		d	efines the curre	nt locatio	on of	the M	IN from	n an IP point of view.	
		a)	Home Agen	ıt		b)	Forei	gn Age	ent	
		c)	Care of add	ress		d)	None	e of the	Se	
	19)	Init	ially DHCP	client sends						
		a)	DHCP Clier	nt		b)	DHC	P Req	uest	
		c)	DHCP Disc	over		d)	All of	these		
2	20)	Infr	ra red device	es offer	band	l wid	lth.			
		a)	Higher	b) Lower	c)	Me	edium	d)	All of these	
				S	SECTIO	N – I				
2.	W	rite	short note o	n (any 4) :						20
	a)	Ant	tennas							
	b)	Sig	inal propaga	tion						
	c)	FD	Μ							
	d)	Sin	nplified Refe	erence Model						
	e)	TE	TRA.							
3.	An	ISWE	er the follow	ing (any 2) :						20
	a)	Exp	plain UMTS	release and star	ndardiza	tion				
	b)	Exp	plain DECT	technology						
	c)	Co	mpare betw	een S/F/T/CDM	۹.					

-4-

SECTION-II

- 4. Write short note on (any 4):
 - a) DHCP
 - b) Agent Discovery
 - c) Congestion Control
 - d) IP packet delivery
 - e) HIPERLAN.
- 5. Answer the following (any 3):
 - a) Explain WAP architecture.
 - b) Explain basic architecture of hierarchical mobile IPV6.
 - c) Explain mobile ad-hoc networks in detail.

20

SLR-KO – 45

Seat	
No.	

T.Y.M.C.A. (Part – I) (Faculty of Engg.) Examination, 2015 WEB DESIGN TECHNIQUES (Old)

Day an Time :	d Date : Wednesd 10.30 a.m. to 1.30	ay, 9-12-2015 p.m.		Total Marks : 100
	Instruction :	Question 3A and	d 5A are compuls	ory.
1. Mu	Iltiple choice ques	tions.		20
1)	How can you ma	ke a numbered li	st ?	
	a) <dl></dl>	b) 	c) <list></list>	d)
2)	Marquee is a tag a) Mark the list of b) Mark the text c) Display text w d) None of above	in HTML to of items to mainta so that it is hidde vith scrolling effe e	ain in queue en in browser ct	
3)	Choose the corre	ect HTML tag for	the largest heading	g.
	a) <h1></h1>	b) <h6></h6>	c) <h10></h10>	d) <head></head>
4)	a) border-color c) color-border	operty is used to	set colour of the bo b) border-style:co d) bgcolor	order. olor
5)	The style defines a) how to display c) how to organia	the / ze	_HTML elements. b) structure d) none of these	
6)	The a) <frame/>	_ tag defines log b) <division></division>	ical divisions (defir c) 	ned) in web page. d) <div></div>
7)	Java script is a a) scripting langu c) application	uage	b) programming la d) none of these	anguage

SLR-K	O – 45		-2-			
8)	ret	urns the characte	er a	at the specified i	nde	ex.
	a) index()	b) lastindexof()	c)	charAt()	d)	none of these
9)	Which is the corr	ect method to de	cla	re variable in ja	iva	script ?
	a) variablename		b)	var variablena	me	
	c) both a) and b)		d)	none of these		
10)	Java script code	is written inside f	ile	having extension	on	
	a) .jsc	b) .js	C)	.javascript	d)	none
11)	Which one of the	se events is stan	daı	rd Global.asa E	ver	nt ?
	a) Seesion_id		b)	Application_Or	nSt Voo	art
10)	The most nepule		u) /	Sesseion_OnL	Jea	
12)	a) DTD	h) XSI T	/IL (UOCUMENTS IS IC HTMI	d)	CSS
13)	Which statement	r = 1	0)		u)	
10)	a) All XML eleme	ents must be proi	ber	lv closed		
	b) All XML docur	ment must have [)		
	c) Both a) and b))				
	d) All statements	s are true				
14)	TypeName() fund	ction in VBScript i	s u	sed		
	a) to return nume	eric representatio	on c	of data		
	b) to return subty	ype of variable				
	d) to convert var	ype of variable				
15)	VR corint is dovo	lopod by				
15)	a) doodle	b) vahoo	c)	microsoft	d)	apple
16)	VB script is		-,		.,	
10)	a) server side	b) client side	c)	both a) and b)	d)	none of these
17)	, is a	a non-interactive	évé	ent handler.	,	
,	a) onClick	b) onKeyUp	c)	onLoad	d)	onMouseMove
18)	Legal ways to ca	II function in VBS	Scri	pt		
,	a) Total = AddNu	ım(10,20)	b)	Call AddNum(1	10,2	20)
	c) AddNum(10,2	0)	d)	All of these		

					-3-				SLR-KO – 45
	19)	number	funct	ion return	is the n	ext integ	ger grea	ater than or eq	jual to that
		a) ceil()	b)	floor()	c)	max()		d) min()	
	20)	The	0	cupies th	ne topr	nost slot	in the D	DOM.	
		a) Window	b)	Navigato	r c)	Form		d) Documen	t
				ç	SECTIO	DN – I			
2.	 2. Write short answer on (any 4): (5×4=20) 1) Physical and logical HTML 2) Border properties of CSS 3) tag of HTML with example 4) Colour properties of CSS 5) Array of jayascript. 								(5×4=20)
3.	A)	Write a HTML o	ode to	accept s	student	ts details	s for MC	CA admission	. 10
	B)	What is java sc	ript ? E OR	Explain m	ath, st	ring and	date o	bjects with ex	ample. 10
	B)	Explain externa	ll and i	nternal C	SS wit	h examp	ole.		10
				S	SECTIO	DN – II			
4.	Wr 1) 2) 3) 4) 5)	ite short answe Functions of V Global.asa file XML with CSS DOM using XN Data base hand	r on (a B scriµ in ASF IL dling ir	n y 4) : ot o NASP.					(5×4=20)
5.	A) B)	What is XML ? Validation and (Explai error h OR	n syntax, andling ir	eleme n VB so	ents and cript with	attribut examp	es of XML. ble.	10 10
	B)	Applications an	d sess	sion in AS	SP with	an exan	nple.		10

SLR-KO – 46

Seat No.

T.Y.M.C.A. (Part – I) (Under Faculty of Engineering) Examination, 2015 INTERNET TECHNOLOGY (Old)

Day and Date : Friday, 11-12-2015 Total Marks: 100 Time : 10.30 a.m. to 1.30 p.m. *Instructions*: 1) To the point answer carries weight-age. 2) Q. **3** a) and Q. **5** a) are **compulsory**. 1. Select the correct alternative. 20 1) _____ is mediator between client and web server in web server architecture. b) Application c) Database d) None of these a) Internet 2) The web server architecture is _____ tier model. b) 2 d) None of these a) 3 c) 1 3) HTTP stands for a) Hypertension Transfer Protocol b) Hyper Transfer Protocol c) Hypertext Transfer Protocol d) None of these 4) _____ technique from the payment method consist of Deposit and Clear as one of the type. a) E-cash b) E-cheque c) Credit card d) Smart card 5) _____ refers to whether the payment can be divided into arbitrary small payments whose sum is equal to original payment. a) Security b) Anonymity c) Divisibility d) Acceptability 6) The technique in which same cipher is used to encrypt and decrypt message is known as _____ key encryption. a) Hybrid b) Public c) Private d) None of these 7) Pick odd man out. a) Cash b) Credit Card c) Cheque d) Authentication

SLR-KO - 46

8)	URL Stands for	
	a) Unique Resource Local	b) Uniform Resource Local
	c) Uniform Resource Locator	d) Unique Resource Location
9)	In C2B e-commerce C and B stands	s for and respectively.
	a) Coal and Business	b) Customer and Busy
	c) Customer and Business	d) None of these
10)	SET protocol supports	
	a) Confidentiality b) Integrity	c) Authentication d) All of these
11)	How would you start a session in Pl	HP ?
	a) session(start);	b) session();
	c) session_start();	d) begin_session();
12)	You need to count the number of p operation. The correct way is :	arameters given in the URL by a POST
	a) count(\$POST_VARS);	<pre>b) count(\$POST_VARS_PARAM);</pre>
	c) count(\$_POST);	d) count(\$HTTP_POST_PARAM);
13)	How would you store order number	(34) in an 'OrderCookie' in PHP ?
	a) Cookie('OrderCookie',34);	b) makeCookie('OrderCookie',34);
	c) setcookie('OrderCookie',34);	d) OrderCookie(34);
14)	Variables/functions in PHP don't wo	ork directly with :
	a) echo() b) print()	c) isset() d) all of the above
15)	The sendRedirect() belongs to	object in JSP.
	a) response b) exception	c) request d) session
16)	JSP abbreviation stands for	
	a) Java Session Page	b) Java Server Protocol
	c) Java Server Page	d) Java Session Protocol

-2-

I				
I				

	17)	attribute	of include directive	ve is used to include	the file in the JSP	
		page.				
		a) file	b) page	c) id	d) get page	
	18)	The extension for	isp file is	_		
		a) .javascript	b) .java	c) .jsp	d) all of these	
	19)	Which of the follow pages ?	wing is used to mai	ntain the value of a va	riable over different	
		a) static		b) global		
		c) session_regis	ter	d) none of the above	9	
	20)	Which of the follo	wing attribute is ne	eeded for file upload v	via form ?	
		a) enctype = 'file	3	b) enctype = 'single	oart/data'	
		c) enctype = 'mu	ltipart/form-data'	d) enctype = 'from-c	lata/file'	
2.	Wr	rite notes on (any	four) :			20
	a)	Digital Signature				
	b)	Servlet Vs. CGI				
	c)	Cookies				
	d)	E-cash				
	e)	HTTP Request ar	nd response			
3.	a)	Assume a suitabl insert a new reco	e structure of stud rd in Student table	ent and write a progra	am in servlet to	10
	b)	Define e-commer commerce	ce. Explain any fo	ur advantages and dis	advantages of e-	10
		OR				
	b)	What is Servlet ?	Explain Servlet Li	fe Cycle in detail.		10

-3-

SLR-KO - 46

-4-

20

- 4. Write notes on (any four) :
 - a) Request and Response in JSP
 - b) <jsp:plugin> and <jsp:forward> in JSP
 - c) Error handling in JSP
 - d) Scripting Elements in JSP
 - e) Object Oriented PHP.

5.	a)	Assume a suitable structure of employee having salary as a column and write a program in PHP to increase salary of employee by Rs. 10,000.	10
	b)	Define Array. Explain any nine array functions in PHP with example.	10
		OR	
	ይ)	Define String, Evolution any pine string functions in DUD with example	10

b) Define String. Explain any nine string functions in PHP with example. **10**

Total Marks: 100

Seat No.	
-------------	--

Day and Date : Monday, 14-12-2015

T.Y.M.C.A. (Under Faculty of Engg.) (Part – I) Examination, 2015 NETWORK ADMINISTRATION (Old)

Time :	10.30 a.m. to 1.30 p.m.		
	SEC	CTION – I	
1. Ch	noose the correct answer :		(1×10=10)
1)	A pure SNMP management syste	m consists of SN	MP agents and
	a) delegates b) workers	c) employees	d) managers
2)	In ASN.1 symbol : : =		
	a) Defined as or assignment	b) Alternatives	or options
	c) Definition of object	d) Range	
3)	There are three types of configu configuration and	ration i.e. static	configuration, permanent
	a) Dynamic	b) Planned	
	c) Both a) and b)	d) None of thes	e
4)	Modern telecommunication netwo	orks mostly carry	data.
	a) analog b) signal	c) digital	d) all of these
5)	TMN stands for		
	a) Telecommunication Managem	ent Network	
	b) Telephone Management Netwo	ork	
	c) Telecommunication Model Net	work	
	d) Telephone Model Network		
6)	processes in the telecommunication c	perations map is ion industry.	s guidebook for business
	a) Exchanged	b) Embedded	
	c) Electronics	d) Enhanced	

SLR-K	O-47		-2-		
7)	The internet uses of	connectionless UI	DP/IP protocol fo	ormes	sages.
	a) receiving		b) transporting	J	
	c) embedding		d) none of the	se	
8)	IRTF stands for _				
	a) Internet Resea	arch Task Force			
	b) International F	Research Task Fo	orce		
	c) Internet Re-en	gineering Task F	orce		
	d) International F	le-engineering Ta	ask Force		
9)	The information n information.	nodel is concerne	ed with the struc	cture and	_of
	a) data		b) maintain		
	c) storage		d) maintenanc	е	
10)	mar	agement involve	es physically se	curing the network,	as well
	as access to the	network by users	6.		
	a) Performance				
	b) Configuration r	nanagement			
	c) Security				
	a) Accounting				
		SEC	TION – II		(1×10=10)
11)	SNMP access po	licy is pairing of S	SNMP commun	ity and	-
	a) Data profile				
	b) Protocol profile	Э			
	c) SNMP commu	inity profile			
	d) All of these				
12)	SNMP messages	are exchanged u	using	_protocol.	
	a) FTP		b) UDP		
	c) TCP		d) SMTP		
13)	is not	a type of trap ge	nerated by SNN	MP agent process.	
	a) Generic trap		b) Specific tra	ρ	
	c) Time stamp		d) Data stamp		
14)	In RMON1 data ty	vpes is divided in	to	types.	
	a) 3	b) 4	c) 2	d) 8	

|--|--|

	15)	The enumeration type is	n value of valid st	ate	in Ent	ryStatus	textual conventior	n data
		a) 1	b) 2	c)	3	C	i) 4	
	16)	The 'etheStatsTa	able' belongs to			group.		
		a) History		b)	Host			
		c) Statistics		d)	None	of these		
	17)	The filter group is expressions.	s used to filter			_ to be ca	aptured based on l	ogical
		a) Data		b)	Pack	ets		
		c) Process		d)	All of	these		
	18)	In ATM RMON, A	ATM stands for					
		a) Asynchronou	s Time Managem	ent				
		b) Asynchronou	s Transfer Metho	d				
		c) Asynchronou	s Transfer Mode					
		d) None of these	9					
	19)	co	ommand in unix a	acq	uires a	all host ac	ddresses of an eth	nernet
		LAN segment.						
		a) ethereal		b)	iptrac	e		
		c) getethers		d)	none	of these		
	20)	to stores them for I	ol captures SNM ater analysis.	IP p	backet	s going a	cross the segmer	nt and
		a) SNMP sniff		b)	SNM	P set		
		c) SNMP walk		d)	SNM	P trap		
			SEC	стіс	JN – I			
2.	Wr	ite short note on ((any 4) :					(4×5=20)
	a)	TCP/IP based ne	tworks					
	b)	Network manage	ment model					
	c)	Managed network	κ					
	d)	Communication n	nodel					
	e)	Encoding structu	re.					

- 3. Answer the following :
 - a) Explain internet organization and standards SNMP in detail.
 - b) Explain network management-goals, organization and functions in detail.

OR

b) Explain ASN.1 in detail.

SECTION - II

- 4. Write short note on (any 4):
 - a) SNMP architectural model
 - b) SNMP functional model
 - c) Remote monitoring (RMON)
 - d) ATM RMON probe location
 - e) SNMP command line tools.
- 5. a) Explain administrative model in SNMP communication model in detail. 10 b) Draw and explain RMON 1 groups and functions in detail. 10 OR 10
 - b) Explain network traffic monitoring and routing tools in detail.

20

(4×5=20)

-4-

 \sim

SLR-KO – 48

Seat	
No.	

T.Y.M.C.A. (Part – I) (Under Faculty of Engg.) (Old) Examination, 2015 DISTRIBUTED DATABASES (Elective – II)

Day Tim	/ and le : 1	I Date : Wednesday 0.30 a.m. to 1.30 p	v, 16-12-2015 .m.		Total Marks : ⁻	100
1.	MC	Q.				20
	1)	A distributed datal same system but a	base is a collection are spread over th	n of data which bel e sites of a comput	ong to the er network.	
		a) Physical	b) Logical	c) Both	d) None of these	
	2)	Each global relatio are called as	ns can be split into	several non overlap	oping portions which	
		a) global relation	b) fragment	c) schema	d) none of these	
	3)	Applications which called as	n can be complete _ locality.	ely executed at the	ir sites of origin are	
		a) complete	b) partial	c) processing	d) none of these	
	4)	A is th	e set of all tuples f	or which a minterm	predicate holds.	
		a) fragment		b) fragment query	/	
		c) global query		d) none of these		
	5)	$R \; B \; (S \; B \; T) \; \leftrightarrow \; (R$	BS) BT, is called	d		
		a) factorization		b) associativity		
		c) distributivity		d) idempotence		
	6)	Unary operations programs called	which apply to t	he same fragment	t are collected into	
		a) query optimizat	tion	b) fragment reduc	cer	

c) critical region d) none of these

SLR-K	0 – 48		-2-				
7)	operative operands.	atio	ns are critical be	eca	use they involve	e the	e comparison of
	a) Binary	b)	Ternary	c)	Unary	d)	Inverse
8)	The site from whic	h th	e application is	sis	sued called as s	site o	of
	a) origin	b)	source	c)	destination	d)	none of these
9)	indica from the specificat	ite h ion	now the specific part of LHS.	atic	on part of the RH	IS sh	ould be derived
	a) Generation rule	S		b)	Operator tree		
	c) Parse tree			d)	Expression tree	е	
10)	A high degree of _ same information.		is achi	eve	ed by storing mu	ultipl	e copies of the
	a) both a and b			b)	availability		
	c) redundancy			d)	reliability		
11)	Two transaction T operation of Ti pred	i ar ced	nd Tj execute _ es the first oper	atic	in a sc on of Ti in S; othe	hed erwi	ule S if the last se they execute
	a) read set, write s	set		b)	serially, concu	rren	tly
	c) serializable, co	nflio	ct	d)	total, ordering		
12)	Atomicity requires results are undone	tha	t if a transactio	n is	interrupted by a	a fai	lure, its
	a) Full	b)	Mixed	c)	Partial	d)	All of these
13)	Byzantine agreeme	ent	nothing but				
	a) Recognizing wr	rong	g message sen	t by	a failed site		
	b) Algorithm for co	onne	ection				
	c) Protocol						
	d) Problem of che	ckp	oint and cold st	tart			
14)	A schedule is con serial schedule.	rect	: if it is		. It is computat	tiona	al equivalent to
	a) Serializable			b)	Sequential		
	c) Indexed			d)	None of above		

			-3-				SLR-KO –	48
15) A distribute centralized c	d database latabase ?	has which	of	the followin	g advanta	ages over a	
	a) Software	cost		b)	Software co	mplexity		
	c) Slow resp	oonse		d)	Modular gro	wth		
16) The costs.	_controllers n	nethod aims a	at e	xploiting for re	educing co	mmunication	
	a) Hieraracl	nical		b)	Global			
	c) Centraliz	ed		d)	Local			
17) The transac	tion's durabil	lity is called					
	a) Concurre	ency control		b)	Database re	ecovery		
	c) Isolation			d)	Serialibility			
18) Serial radiat	oility algorithr _ (operational	ms rely on th) or	e a	ssumption th (failed).	at whethe	r each site is	
	a) high, low			b)	up, down			
	c) higher, lo	wer		d)	down, up			
19) A buffer poo	l is do						
	a) Store old	page till the	progress	b)	Store new p	age		
	c) Store unu	used pages		d)	Store not ar	ything		
20) An extreme down.	case of multi	ple failure is	a_	fail	ure, where	e all sites are	
	a) Partial	b) Ab	oort	c)	Total	d) Site	e	
			SECTIC	DN -	-1			
2. W	rite short note	on (any 4) :					(5×4=	:20)
A) Distributed of	database acc	ess primitiv	es.				
В) Features of	distributed V	s centralized	d da	atabases.			
С) Top-Down a	nd Bottom-U	p approache	es t	o the design	of data dis	tribution.	
D) Mixed fragm	entation			5			
_	,							

E) General queries.

SL	R-KO – 48 -4-	
3.	A) What is fragmentation ? Explain horizontal and derived horizontal frag	gmentation. 10
	B) Explain in detail equivalence transformation for queries. OR	10
	B) Explain framework for query optimization.	10
	SECTION - II	
4.	Write short note on (any 4) :	20
	A) Protection	
	B) Catalog	
	C) Transaction	
	D) Communication failure	
	E) Timestamp.	
5.	A) What are the different fields of log record ? Explain each in brief	. 10
	 B) Write a short note on serializability. OR 	10
	B) Explain the framework for transaction management.	10

Total Marks: 70

14

Seat	
No.	

M.C.A. (Engg.) Direct II Year Students (Bridge Course) Examination, 2015 DISCRETE MATHEMATICAL STRUCTURE (Paper – I)

Day and Date : Friday, 18-12-2015 Time : 10.30 a.m. to 1.30 p.m.

Instructions : 1) Draw diagram wherever necessary.
2) Figures to the right indicate full marks.

- 1. Choose correct alternative :
 - 1) A ______ of a set of distinct objects is an ordered arrangement of these objects.
 - a) Combination b) Permutation
 - c) Discrete structure d) None of these
 - 2) The number of r-combinations of a set with n elements, where n is a nonnegative integer and r is an integer with $0 \le r \le n$, equals, C (n, r) = _____

a)
$$\frac{n!}{r!(n-r)!}$$

b) $\frac{r!}{n!(n-r)!}$
c) n^{r}
d) $n(n-1)(n-2)....(n-r+1)$

- 3) How many permutations of {a, b, c, d, e, f, g} end with a ?
 - a) 120 b) 5040
 - c) 720 d) 600
- 4) The counting of arrangements of objects is known as _____
 - a) Enumeration b) Permutation
 - c) Combination d) None of these
- 5) A one-dimensional array is called a _____
 - a) Matrix b) Vector c) Both a) and b) d) Stack

SLR-K	O – 49	-2-	
6)	Matrix with only row is called		
	a) Column vector	b)	Column matrix
	c) Row matrix	d)	None of these
7)	The matrix-A is called the		of the matrix A.
	a) Inverse	b)	Addition
	c) Multiplication	d)	Negative
8)	Which of the following is not a stat	em	ient:
	i) New York is a city		
	ii) 1/101 = 110		
	iii) Marks is cleaver		
	iv) This statement is true		
	a) i) b) ii)	c)	iii) d) iv)
9)	A formula which is equivalent to a of elementary products is called a	giv	en formula and which consists of a sum
	a) Simple normal form		
	b) Conjunctive normal form		
	c) Disjunctive normal form		
	d) Principal normal form		
10)	The logic based upon the analysis called	of	predicates in any statement is
	a) Predicate calculus	b)	Predicate logic
	c) Predicate formula	d)	None of these
11)	For two arbitrary sets A and B, A ×	кВi	is the
	a) Cartesian product	b)	Sum
	c) Power set	d)	None of these
12)	In the function given below, the se	t A i	is called the
	$f: A \rightarrow B$		
	a) Codomain	b)	Function
	c) Subset	d)	Domain

13) A graph T is called a ______ if T is connected and T has no cycles.

-3-

- a) Bipartite graph b) Complete graph
- c) Tree d) Both a) and b)
- 14) A graph is called a ______ if its edges and/or vertices are assigned data of one kind or another.
 - a) Regular graph b) Binary tree
 - c) Planar graph d) Labelled graph

Each question from Q. 2 to Q. 7 carries 14 marks : Solve any 3 (three) questions from Q. 2 to Q. 6 : Q. 7 is compulsory.

2. A) Define Permutation. Find the values of each of these quantities :

- i) P (6, 3)ii) P(6, 5)iii) P (8, 1)iv) P(8, 5)
- v) P(8, 8)
- B) Find transpose for a given matrix :

$$A = \begin{bmatrix} 14 & -15 & 16 \\ -11 & 12 & 13 \\ -12 & 14 & 17 \end{bmatrix}$$

Write a C program to find transpose of a given matrix.

3. A) Find inverse of

$A = \begin{bmatrix} 4 & -5 & 6 \\ -1 & 2 & 3 \\ -2 & 4 & 7 \end{bmatrix}$

- B) Give the definition of conjunctive normal form and obtain CNF for $T(P \lor Q) \xrightarrow{\rightarrow} (P \land Q)$
- 4. A) What are Boolean Matrices and explain the operations on it.
 7
 B) What is relation ? Explain reflexive type of relation with example.
 7

7

7

SLR-KO – 49

5.	A)	Explain in detail what is	function and i	nvertible fund	ction.		7
	B)	Explain Lattices. Give its	s properties.				7
6.	A)	Define and explain set.	What are the	various types	of set ? Expl	ain with	
		example.					7
	B)	Give definitions for; walk	k, path and cir	cuit with neat	diagram and	example.	7
7.	A)	Give definition for graph with example.	, degree of ve	rtex, isolated	l vertex, pend	ent vertex	7
	B)	Sets A and B are the sul	osets of the U	niversal Set	U, where		7
		$U = \{0, 1, 2, 3, 4, 5, 6, 7$, 8, 9}				
		$A = \{1, 2, 3, ,4, 5\}$ and B	= {2, 3, 4, 5}				
		Find ∶i) A∪B	ii) A∩B	iii) A – B	iv) ~A	v) ~B	

-4-

SLR-KO – 49

SLR-KO – 50

Seat	
No.	

M.C.A. (Engg.) Direct Second Year Students (Bridge Course) Examination, 2015 OPERATING SYSTEM (Paper – II)

Day and Date : Saturday, 19-12-2015 Time : 10.30 a.m. to 1.30 p.m.

Instructions: 1) *Q*. **1** and *Q*. **7** are compulsory.

- 2) Attempt any 3 questions from Q. No. 2, 3, 4, 5 and 6.
 - 3) Figures to the right indicate full marks.

1. Multiple Choice Questions :

- 1) In operating system, each process has its own
 - a) Address space and global variables
 - b) Open files
 - c) Pending alarms, signals and signal handlers
 - d) All of the mentioned
- 2) A process stack does not contain
 - a) Function parameters
- b) PID of child process
- c) Return addresses
- d) Local variables
- 3) A Process Control Block (PCB) does not contain which of the following
 - a) Bootstrap program
- b) Process state
- c) I/O status information d) Program counter
- 4) The objective of multi-programming is to
 - a) To maximize CPU utilization
 - b) Have some process running at all times
 - c) Both a) and b)
 - d) None
- 5) A set of processes are deadlocked if
 - a) All processes are trying to kill each other
 - b) Each process is terminated
 - c) Each process is blocked and will remain so forever
 - d) None

Total Marks: 70

-2-

6) Which process can affect or be affected by other processes executing in the system?

- a) Child process b) Cooperating process
- c) Parent process d) Init process
- 7) Which module gives control of the CPU to the process selected by the short-term scheduler?
 - a) Scheduler b) Interrupt
 - c) Dispatcher d) None
- 8) The most optimal scheduling algorithm is
 - a) FCFS First Come First Served b) RR Round Robin
 - c) SJF Shortest Job First d) None of these
- 9) A memory buffer used to accommodate a speed differential is called
 - b) Disk buffer a) Stack pointer
 - c) Accumulator d) Cache
- 10) Because of virtual memory, the memory can be shared among
 - a) Instructions b) Threads
 - d) None c) Processes
- 11) In FIFO page replacement algorithm, when a page must be replaced
 - a) Random page is chosen b) Newest page is chosen
 - c) Oldest page is chosen d) None
- 12) In segmentation, each address is specified by
 - a) An offset b) A segment number
 - c) Both a) and b) d) None
- 13) Which of the following is the deadlock avoidance algorithm?
 - a) Elevator algorithm b) Round-Robin algorithm
 - c) Banker's algorithm d) Karn's algorithm
- 14) What is the mounting of file system?
 - a) Deleting a file system
 - b) Attaching portion of the file system into a directory structure
 - c) Crating of a file system
 - d) Removing portion of the file system into a directory structure

		-3- SLR·	-KO – 50
2.	a)	Define operating system ? Explain any four operating system compone	ents? 7
	b)	Explain real time and time sharing operating system in detail.	7
3.	a)	What is process scheduling ? Explain criteria's for process scheduling	j. 7
	b)	Explain Multilevel Feedback Queue Scheduling in detail.	7
4.	a)	What is deadlock ? Explain conditions for deadlocks in detail.	7
	b)	Write a short note on deadlock prevention.	7
5.	a)	Explain the concept of disk formatting and boot block.	7
	b)	What is disk scheduling ? Explain FCFS disk scheduling in detail.	7
6.	a)	Compare round robin and priority scheduling.	7
	b)	Explain short, medium and long term scheduler in detail.	7
7.	a)	What is mean by swapping a process ? Explain swapping process in d with diagram.	letail 7
	b)	Explain paging and its implementation.	7